JAJSVL2A November   2024  – January 2025 TLV61047

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Undervoltage Lockout
      2. 7.3.2 Enable and Disable
      3. 7.3.3 Soft Start
      4. 7.3.4 Thermal Shutdown
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 12V Output Boost Converter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Programming the Output Voltage
          2. 8.2.1.2.2 Inductor Selection
          3. 8.2.1.2.3 Input and Output Capacitor Selection
          4. 8.2.1.2.4 Diode Rectifier Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 28V Output Boost Converter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 サード・パーティ製品に関する免責事項
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Inductor Selection

Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the inductor is the most important component in power regulator design. There are three important inductor specifications, inductor value, saturation current, and DC resistance (DCR). The TLV61047 is designed to work with inductor values between 2.2µH and 10µH. Use Equation 2 to Equation 4 to calculate the peak current of the application inductor. To calculate the current in the worst case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough design margin, choose the inductor value with –30% tolerance, and a low power-conversion efficiency for the calculation. In a boost regulator, the inductor dc current can be calculated with Equation 2.

Equation 2. IL(DC)=VOUT×IOUTVIN×η

where

  • VOUT = output voltage
  • IOUT = output current
  • VIN = input voltage
  • η = power conversion efficiency, use 80% for most applications

The inductor ripple current is calculated with the with the equation below for an asynchronous boost converter in continuous conduction mode (CCM).

Equation 3. IL(P-P)=VIN×VOUT+VD-VINL×fSW×VOUT+VD

where

  • ΔIL(P-P) = inductor ripple current
  • L = inductor value
  • fSW = switching frequency
  • VOUT = output voltage
  • VIN = input voltage
  • VD = the forward voltage of the Schottky diode

Therefore, the inductor peak current is calculated with the below equation.

Equation 4. IL(P)=IL(DC)+IL(P-P)2

Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic hysteresis losses in the inductor and EMI. However, in the same way, load transient response time is increased. Table 8-2 lists the recommended inductor for the TLV61047 in the 1.6MHz configuration.

Table 8-2 Recommended Inductors for the TLV61047 at 1.6MHz Configuration
PART NUMBER L (µH) DCR MAX (mΩ) SATURATION CURRENT TYPICAL (A) SIZE (L×W×H) (mm) VENDOR(1)
SWPA5040S4R7NT 4.7 39 3.9 5 × 5 × 4 Sunlord
XAL4030-472ME 4.7 44.1 4.5 4 × 4 × 3 Coilcraft
SWPA5040S100MT 10 83 2.9 5 × 5 × 4 Sunlord
XAL4040-103ME 10 92.4 3 4 × 4 × 4 Coilcraft