JAJSFJ6C October   2012  – May 2018 TMS570LS0332 , TMS570LS0432

PRODUCTION DATA.  

  1. 1デバイスの概要
    1. 1.1 特長
    2. 1.2 アプリケーション
    3. 1.3 概要
    4. 1.4 機能ブロック図
  2. 2改訂履歴
  3. 3Device Comparison
  4. 4Terminal Configuration and Functions
    1. 4.1 PZ QFP Package Pinout (100-Pin)
    2. 4.2 Terminal Functions
      1. 4.2.1  High-End Timer (N2HET)
      2. 4.2.2  Enhanced Quadrature Encoder Pulse Modules (eQEP)
      3. 4.2.3  General-Purpose Input/Output (GPIO)
      4. 4.2.4  Controller Area Network Interface Modules (DCAN1, DCAN2)
      5. 4.2.5  Multibuffered Serial Peripheral Interface (MibSPI1)
      6. 4.2.6  Standard Serial Peripheral Interface (SPI2)
      7. 4.2.7  Local Interconnect Network Controller (LIN)
      8. 4.2.8  Multibuffered Analog-to-Digital Converter (MibADC)
      9. 4.2.9  System Module
      10. 4.2.10 Error Signaling Module (ESM)
      11. 4.2.11 Main Oscillator
      12. 4.2.12 Test/Debug Interface
      13. 4.2.13 Flash
      14. 4.2.14 Core Supply
      15. 4.2.15 I/O Supply
      16. 4.2.16 Core and I/O Supply Ground Reference
    3. 4.3 Output Multiplexing and Control
      1. 4.3.1 Notes on Output Multiplexing
      2. 4.3.2 General Rules for Multiplexing Control Registers
    4. 4.4 Special Multiplexed Options
      1. 4.4.1 Filtering for eQEP Inputs
        1. 4.4.1.1 eQEPA Input
        2. 4.4.1.2 eQEPB Input
        3. 4.4.1.3 eQEPI Input
        4. 4.4.1.4 eQEPS Input
      2. 4.4.2 N2HET PIN_nDISABLE Input Port
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Power-On Hours (POH)
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Switching Characteristics Over Recommended Operating Conditions for Clock Domains
    6. 5.6  Wait States Required
    7. 5.7  Power Consumption
    8. 5.8  Thermal Resistance Characteristics for PZ
    9. 5.9  Input/Output Electrical Characteristics
    10. 5.10 Output Buffer Drive Strengths
    11. 5.11 Input Timings
    12. 5.12 Output Timings
  6. 6System Information and Electrical Specifications
    1. 6.1  Voltage Monitor Characteristics
      1. 6.1.1 Important Considerations
      2. 6.1.2 Voltage Monitor Operation
      3. 6.1.3 Supply Filtering
    2. 6.2  Power Sequencing and Power-On Reset
      1. 6.2.1 Power-Up Sequence
      2. 6.2.2 Power-Down Sequence
      3. 6.2.3 Power-On Reset: nPORRST
        1. 6.2.3.1 nPORRST Electrical and Timing Requirements
    3. 6.3  Warm Reset (nRST)
      1. 6.3.1 Causes of Warm Reset
      2. 6.3.2 nRST Timing Requirements
    4. 6.4  ARM Cortex-R4 CPU Information
      1. 6.4.1 Summary of ARM Cortex-R4 CPU Features
      2. 6.4.2 ARM Cortex-R4 CPU Features Enabled by Software
      3. 6.4.3 Dual Core Implementation
      4. 6.4.4 Duplicate clock tree after GCLK
      5. 6.4.5 ARM Cortex-R4 CPU Compare Module (CCM) for Safety
      6. 6.4.6 CPU Self-Test
        1. 6.4.6.1 Application Sequence for CPU Self-Test
        2. 6.4.6.2 CPU Self-Test Clock Configuration
        3. 6.4.6.3 CPU Self-Test Coverage
    5. 6.5  Clocks
      1. 6.5.1 Clock Sources
        1. 6.5.1.1 Main Oscillator
          1. 6.5.1.1.1 Timing Requirements for Main Oscillator
        2. 6.5.1.2 Low-Power Oscillator
          1. 6.5.1.2.1 Features
          2. 6.5.1.2.2 LPO Electrical and Timing Specifications
        3. 6.5.1.3 Phase Locked Loop (PLL) Clock Modules
          1. 6.5.1.3.1 Block Diagram
          2. 6.5.1.3.2 PLL Timing Specifications
      2. 6.5.2 Clock Domains
        1. 6.5.2.1 Clock Domain Descriptions
        2. 6.5.2.2 Mapping of Clock Domains to Device Modules
      3. 6.5.3 Clock Test Mode
    6. 6.6  Clock Monitoring
      1. 6.6.1 Clock Monitor Timings
      2. 6.6.2 External Clock (ECLK) Output Functionality
      3. 6.6.3 Dual Clock Comparator
        1. 6.6.3.1 Features
        2. 6.6.3.2 Mapping of DCC Clock Source Inputs
    7. 6.7  Glitch Filters
    8. 6.8  Device Memory Map
      1. 6.8.1 Memory Map Diagram
      2. 6.8.2 Memory Map Table
      3. 6.8.3 Master/Slave Access Privileges
    9. 6.9  Flash Memory
      1. 6.9.1 Flash Memory Configuration
      2. 6.9.2 Main Features of Flash Module
      3. 6.9.3 ECC Protection for Flash Accesses
      4. 6.9.4 Flash Access Speeds
    10. 6.10 Flash Program and Erase Timings for Program Flash
    11. 6.11 Flash Program and Erase Timings for Data Flash
    12. 6.12 Tightly Coupled RAM Interface Module
      1. 6.12.1 Features
      2. 6.12.2 TCRAMW ECC Support
    13. 6.13 Parity Protection for Accesses to peripheral RAMs
    14. 6.14 On-Chip SRAM Initialization and Testing
      1. 6.14.1 On-Chip SRAM Self-Test Using PBIST
        1. 6.14.1.1 Features
        2. 6.14.1.2 PBIST RAM Groups
      2. 6.14.2 On-Chip SRAM Auto Initialization
    15. 6.15 Vectored Interrupt Manager
      1. 6.15.1 VIM Features
      2. 6.15.2 Interrupt Request Assignments
    16. 6.16 Real-Time Interrupt Module
      1. 6.16.1 Features
      2. 6.16.2 Block Diagrams
      3. 6.16.3 Clock Source Options
    17. 6.17 Error Signaling Module
      1. 6.17.1 Features
      2. 6.17.2 ESM Channel Assignments
    18. 6.18 Reset / Abort / Error Sources
    19. 6.19 Digital Windowed Watchdog
    20. 6.20 Debug Subsystem
      1. 6.20.1 Block Diagram
      2. 6.20.2 Debug Components Memory Map
      3. 6.20.3 JTAG Identification Code
      4. 6.20.4 Debug ROM
      5. 6.20.5 JTAG Scan Interface Timings
      6. 6.20.6 Advanced JTAG Security Module
      7. 6.20.7 Boundary Scan Chain
  7. 7Peripheral Information and Electrical Specifications
    1. 7.1 Peripheral Legend
    2. 7.2 Multibuffered 12-Bit Analog-to-Digital Converter
      1. 7.2.1 Features
      2. 7.2.2 Event Trigger Options
        1. 7.2.2.1 MIBADC Event Trigger Hookup
      3. 7.2.3 ADC Electrical and Timing Specifications
      4. 7.2.4 Performance (Accuracy) Specifications
        1. 7.2.4.1 MibADC Nonlinearity Errors
        2. 7.2.4.2 MibADC Total Error
    3. 7.3 General-Purpose Input/Output
      1. 7.3.1 Features
    4. 7.4 Enhanced High-End Timer (N2HET)
      1. 7.4.1 Features
      2. 7.4.2 N2HET RAM Organization
      3. 7.4.3 Input Timing Specifications
      4. 7.4.4 N2HET Checking
        1. 7.4.4.1 Output Monitoring using Dual Clock Comparator (DCC)
      5. 7.4.5 Disabling N2HET Outputs
      6. 7.4.6 High-End Timer Transfer Unit (N2HET)
        1. 7.4.6.1 Features
        2. 7.4.6.2 Trigger Connections
    5. 7.5 Controller Area Network (DCAN)
      1. 7.5.1 Features
      2. 7.5.2 Electrical and Timing Specifications
    6. 7.6 Local Interconnect Network Interface (LIN)
      1. 7.6.1 LIN Features
    7. 7.7 Multibuffered / Standard Serial Peripheral Interface
      1. 7.7.1 Features
      2. 7.7.2 MibSPI Transmit and Receive RAM Organization
      3. 7.7.3 MibSPI Transmit Trigger Events
        1. 7.7.3.1 MIBSPI1 Event Trigger Hookup
      4. 7.7.4 MibSPI/SPI Master Mode I/O Timing Specifications
      5. 7.7.5 SPI Slave Mode I/O Timings
    8. 7.8 Enhanced Quadrature Encoder (eQEP)
      1. 7.8.1 Clock Enable Control for eQEPx Modules
      2. 7.8.2 Using eQEPx Phase Error
      3. 7.8.3 Input Connections to eQEPx Modules
      4. 7.8.4 Enhanced Quadrature Encoder Pulse (eQEPx) Timing
  8. 8デバイスおよびドキュメントのサポート
    1. 8.1  デバイス・サポート
      1. 8.1.1 開発サポート
        1. 8.1.1.1 はじめに
      2. 8.1.2 デバイスの項目表記
    2. 8.2  ドキュメントのサポート
      1. 8.2.1 テキサス・インスツルメンツの関連資料
    3. 8.3  関連リンク
    4. 8.4  Community Resources
    5. 8.5  商標
    6. 8.6  静電気放電に関する注意事項
    7. 8.7  Glossary
    8. 8.8  デバイス識別コード・レジスタ
      1. Table 8-2 デバイスIDビット割り当てレジスタのフィールドの説明
    9. 8.9  ダイ識別レジスタ
    10. 8.10 モジュール認定
      1. 8.10.1 DCAN認定
      2. 8.10.2 LIN認定
        1. 8.10.2.1 LINマスタ・モード
        2. 8.10.2.2 LINスレーブ・モード - 固定ボーレート
        3. 8.10.2.3 LINスレーブ・モード - 適応型ボーレート
  9. 9メカニカル、パッケージ、および注文に関する付録
    1. 9.1 パッケージ情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

ADC Electrical and Timing Specifications

Table 7-4 MibADC Recommended Operating Conditions

PARAMETER MIN MAX UNIT
ADREFHI A-to-D high-voltage reference source ADREFLO VCCAD V
ADREFLO A-to-D low-voltage reference source VSSAD ADREFHI V
VAI Analog input voltage ADREFLO ADREFHI V
IAIC Analog input clamp current
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)
–2 2 mA

Table 7-5 MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions(1)

PARAMETER DESCRIPTION/CONDITIONS MIN TYP MAX UNIT
Rmux Analog input mux on-resistance See Figure 7-1 95 250 Ω
Rsamp ADC sample switch on-resistance See Figure 7-1 60 250 Ω
Cmux Input mux capacitance See Figure 7-1 7 16 pF
Csamp ADC sample capacitance See Figure 7-1 8 13 pF
IAIL Analog off-state input leakage current VCCAD = 3.6 V MAX VSSAD < VIN < VSSAD + 100 mV –300 –1 200 nA
VSSAD + 100 mV < VIN < VCCAD - 200 mV –200 –0.3 200
VCCAD - 200 mV < VIN < VCCAD –200 1 500
IAOSB Analog on-state input bias VCCAD = 3.6 V MAX VSSAD < VIN < VSSAD + 100 mV –8 2 µA
VSSAD + 100 mV < VIN < VCCAD - 200 mV –4 2
VCCAD - 200 mV < VIN < VCCAD –4 12
IADREFHI ADREFHI input current ADREFHI = VCCAD, ADREFLO = VSSAD 3 mA
ICCAD Static supply current Normal operating mode  (2) mA
ADC core in power-down mode 5 µA
1 LSB = (ADREFHI – ADREFLO)/ 2n where n = 10 in 10-bit mode and 12 in 12-bit mode
See Section 5.7.
TMS570LS0432 TMS570LS0332 mibadc_circuit_spns186.gifFigure 7-1 MibADC Input Equivalent Circuit

Table 7-6 MibADC Timing Specifications

PARAMETER MIN NOM MAX UNIT
tc(ADCLK)(2) Cycle time, MibADC clock 33 ns
td(SH)(3) Delay time, sample and hold time 200 ns
td(PU-ADV) Delay time from ADC power on until first input can be sampled 1 µs
12-BIT MODE
td(C) Delay time, conversion time 400 ns
td(SHC)(1) Delay time, total sample/hold and conversion time 600 ns
10-BIT MODE
td(C) Delay time, conversion time 330 ns
td(SHC)(1) Delay time, total sample/hold and conversion time 530 ns
This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors for example, the prescale settings.
The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits 4:0.
The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each conversion group. The sample time must be determined by accounting for the external impedance connected to the input channel as well as the internal impedance of the ADC.

Table 7-7 MibADC Operating Characteristics Over Full Ranges of Recommended Operating Conditions

PARAMETER DESCRIPTION/CONDITIONS MIN TYP MAX UNIT
CR Conversion range over which specified accuracy is maintained ADREFHI - ADREFLO 3 3.6 V
ZSET Offset Error Difference between the first ideal transition (from code 000h to 001h) and the actual transition 10-bit mode With ADC Calibration 1 LSB(1)
Without ADC Calibration 2
12-bit mode With ADC Calibration 2
Without ADC Calibration 4
FSET Gain Error Difference between the last ideal transition (from code FFEh to FFFh) and the actual transition minus offset. 10-bit mode 2 LSB
12-bit mode 3
EDNL Differential nonlinearity error Difference between the actual step width and the ideal value.
(See Figure 7-2)
10-bit mode ± 1.5 LSB
12-bit mode ± 2
EINL Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error.
(See Figure 7-3)
10-bit mode ± 2 LSB
12-bit mode ± 2
ETOT Total unadjusted error Maximum value of the difference between an analog value and the ideal midstep value. (See Figure 7-4) 10-bit mode With ADC Calibration ± 2 LSB
Without ADC Calibration ± 4
12-bit mode With ADC Calibration ± 4
Without ADC Calibration ± 7
1 LSB = (ADREFHI – ADREFLO)/ 2n where n = 10 in 10-bit mode and 12 in 12-bit mode