JAJSQX2A August   2023  – December 2024 TMUX7612

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Thermal Information
    4. 5.4  Source or Drain Current through Switch
    5. 5.5  Recommended Operating Conditions
    6. 5.6  Electrical Characteristics (Global)
    7. 5.7  Electrical Characteristics (±15 V Dual Supply)
    8. 5.8  Switching Characteristics (±15 V Dual Supply)
    9. 5.9  Electrical Characteristics (±20 V Dual Supply)
    10. 5.10 Switching Characteristics (±20 V Dual Supply)
    11. 5.11 Electrical Characteristics (+37.5 V/–12.5 V Dual Supply)
    12. 5.12 Switching Characteristics (+37.5 V/–12.5 V Dual Supply)
    13. 5.13 Electrical Characteristics (12 V Single Supply)
    14. 5.14 Switching Characteristics (12 V Single Supply)
    15. 5.15 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  On-Resistance
    2. 6.2  Off-Leakage Current
    3. 6.3  On-Leakage Current
    4. 6.4  tON and tOFF Time
    5. 6.5  Propagation Delay
    6. 6.6  Charge Injection
    7. 6.7  Off Isolation
    8. 6.8  Channel-to-Channel Crosstalk
    9. 6.9  Bandwidth
    10. 6.10 THD + Noise
    11. 6.11 Power Supply Rejection Ratio (PSRR)
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Bidirectional Operation
      2. 7.3.2 Rail-to-Rail Operation
      3. 7.3.3 1.8 V Logic Compatible Inputs
      4. 7.3.4 Flat On-Resistance
      5. 7.3.5 Power-Up Sequence Free
      6. 7.3.6 Ultra-Low Charge Injection
      7. 7.3.7 Ultra-Low Leakage Current
    4. 7.4 Device Functional Modes
      1. 7.4.1 Truth Tables
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Detailed Design Procedure
      2. 8.2.2 Design Requirements
      3. 8.2.3 Application Curve
    3. 8.3 Thermal Considerations
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information
    2. 11.2 Mechanical Data

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Power Supply Recommendations

The TMUX7612 device operates across a wide supply range of ±4.5 V to ±25V (4.5 V to 50V in single-supply mode). The device also performs well with asymmetrical supplies such as VDD = 37.5 V and VSS = –12.5 V.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always make sure a solid ground (GND) connection is established before supplies are ramped.