SLOS520A August   2007  – March 2016 TPA2013D1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  DC Characteristics
    6. 7.6  Boost Converter DC Characteristics
    7. 7.7  Class D Amplifier DC Characteristics
    8. 7.8  AC Characteristics
    9. 7.9  Class D Amplifier AC Characteristics
    10. 7.10 Dissipation Ratings
    11. 7.11 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully Differential Amplifier
        1. 9.3.1.1 Advantages of Fully Differential Amplifiers
      2. 9.3.2 Class-D Amplifier
      3. 9.3.3 Boost Converter
      4. 9.3.4 Operation With DACs and CODECs
      5. 9.3.5 Filter-Free Operation and Ferrite Bead Filters
      6. 9.3.6 Fixed Gain Settings
    4. 9.4 Device Functional Modes
      1. 9.4.1 Boost Converter Mode
      2. 9.4.2 Shutdown Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 TPA2013D1 With Differential Input Signal
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Setting the Boost Voltage
          2. 10.2.1.2.2 Inductor Selection
            1. 10.2.1.2.2.1 Surface Mount Inductors
            2. 10.2.1.2.2.2 TPA2013D1 Inductor Equations
          3. 10.2.1.2.3 Capacitor Selection
            1. 10.2.1.2.3.1 Surface Mount Capacitors
            2. 10.2.1.2.3.2 TPA2013D1 Capacitor Equations
          4. 10.2.1.2.4 Recommended Inductor and Capacitor Values by Application
          5. 10.2.1.2.5 Components Location and Selection
            1. 10.2.1.2.5.1 Decoupling Capacitors
            2. 10.2.1.2.5.2 Input Capacitors
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Bypassing the Boost Converter
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
      3. 10.2.3 Stereo Operation Application
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curves
      4. 10.2.4 LED Driver for Digital Still Cameras
      5. 10.2.5 Design Requirements
      6. 10.2.6 Detailed Design Procedure
      7. 10.2.7 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 Power Supply Decoupling Capacitors
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Component Placement
        1. 12.1.1.1 Trace Width
      2. 12.1.2 Pad Side
    2. 12.2 Layout Examples
    3. 12.3 Efficiency and Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
      2. 13.1.2 Device Nomenclature
        1. 13.1.2.1 Boost Terms
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VDD Supply voltage –0.3 6 V
VI Input voltage, Vi: SDb, SDd, IN+, IN–, VCCFB –0.3 VDD + 0.3 V
Continuous total power dissipation See Dissipation Ratings
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
VDD Supply voltage 1.8 5.5 V
VIH High-level input voltage SDb, SDd 1.3 V
VIL Low-level input voltage SDb, SDd 0.35 V
| IIH | High-level input current SDb = SDd = 5.8 V, VDD = 5.5 V, VCC = 5.5 V 1 μA
| IIL| Low-level input current SDb = SDd = -0.3 V, VDD = 5.5 V, VCC = 5.5 V 20 μA
TA Operating free-air temperature –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) TPA2013D1 UNIT
RGP (VQFN) YZH (DSBGA)
20 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 34 70.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 33.4 0.3 °C/W
RθJB Junction-to-board thermal resistance 10.5 15 °C/W
ψJT Junction-to-top characterization parameter 0.4 1.8 °C/W
ψJB Junction-to-board characterization parameter 10.5 14.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 DC Characteristics

TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC Class-D audio power amplifier voltage supply range, VCCIN 3 5.5 V
ISD Shutdown quiescent current SDd = SDb = 0 V, VDD = 1.8 V, RL = 8 Ω 0.04 1.5 μA
SDd = SDb = 0 V, VDD = 3.6 V, RL = 8 Ω 0.04 1.5
SDd = SDb = 0 V, VDD = 4.5 V, RL = 8 Ω 0.02 1.5
SDd = SDb = 0.35 V, VDD = 1.8 V, RL = 8 Ω 0.03 1.5
SDd = SDb = 0.35 V, VDD = 3.6 V, RL = 8 Ω 0.03 1.5
SDd = SDb = 0.35 V, VDD = 4.5 V, RL = 8 Ω 0.02 1.5
IDD Boost converter quiescent current SDd = 0 V, SDb = 1.3 V, VDD = 3.6 V, VCC = 5.5 V, No Load, No Filter 1.3 mA
ICC Class D amplifier quiescent current VDD = 3.6, Vcc = 5.5 V, No Load, No Filter 4.3 6 mA
VDD = 4.5, Vcc = 5.5 V, No Load, No Filter 3.6 6
IDD Boost converter and audio power amplifier quiescent current, Class D(1) SDd = SDb = 1.3 V, VDD = 3.6 V, Vcc = 5.5 V, No Load, No Filter 16.5 23 mA
SDd = SDb = 1.3V, VDD = 4.5 V, Vcc = 5.5 V, No Load, No Filter 11 18.5
f Boost converter switching frequency 500 600 700 kHz
Class D switching frequency 250 300 350 kHz
UVLO Under voltage lockout 1.7 V
GAIN Gain input low level Gain = 2 V/V (6 dB) 0 0.35 V
Gain input mid level Gain = 6 V/V (15.5 dB) (floating input) 0.7 0.8 1 V
Gain input high level Gain = 10 V/V (20 dB) 1.35 V
PORD Class D Power on reset ON threshold 2.8 V
(1) IDD is calculated using IDD = (ICC× VCC)/(VDD×η), where ICC is the class D amplifier quiescent current; η = 40%, which is the boost converter efficiency when class D amplifier has no load. To achieve the minimal 40% η, it is recommended to use the suggested inductors in table 4 and to follow the layout guidelines.

7.6 Boost Converter DC Characteristics

TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC Output voltage range 3 5.5 V
VFB Feedback voltage 490 500 510 mV
IOL Output current limit, Boost_max 1300 1500 1700 mA
RON_PB PMOS switch resistance 220
RON_NB NMOS resistance 170
Line regulation No Load, 1.8 V < VDD < 5.2 V, VCC = 5.5 V 3 mV/V
Load regulation VDD = 3.6 V, 0 < IL < 500 mA, VCC = 5.5 V 30 mV/A
IL Start-up current limit, Boost 0.4×IBoost mA

7.7 Class D Amplifier DC Characteristics

TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CMR Input common mode range Vin = ±100 mV, VDD = 1.8 V, VCC = 3 V, RL = 8 Ω 0.5 2.2 V
Vin = ±100 mV, VDD = 2.5 V, VCC = 3.6 V, RL = 8 Ω 0.5 2.8
Vin = ±100 mV, VDD = 3.6 V, VCC = 5.5 V, RL = 8 Ω 0.5 4.7
CMRR Input common mode rejection RL = 8 Ω, Vicm = 0.5 and Vicm = VCC – 0.8, differential inputs shorted –75 dB
VOO Output offset voltage
Class-D
VCC = 3.6 V, Av = 2 V/V, IN+ = IN– = Vref, RL = 8 Ω 1 6 mV
VCC= 3.6 V, Av = 6 V/V, IN+ = IN– = Vref, RL = 8 Ω 1 6
VCC= 3.6 V, Av = 10 V/V, IN+ = IN– = Vref, RL = 8 Ω 1 6
VCC = 5.5 V, Av = 2 V/V, IN+ = IN– = Vref, RL = 8 Ω 1 6
Rin Input Impedance Gain = 2 V/V (6 dB) 32
Gain = 6 V/V (15.5 dB) 15
Gain = 10 V/V (20 dB) 9.5
RDS(on) OUTP High-side FET On-state series resistance IOUTx = –300 mA; VCC = 3.6 V 0.36 Ω
OUTP Low-side FET On-state series resistance 0.36
RDS(on) OUTN High-side FET On-state series resistance 0.36
OUTN Low-side FET On-state series resistance 0.36
AV Low Gain GAIN ≤ 0.35 V 1.8 2 2.2 V/V
Mid Gain GAIN = 0.8 V 5.7 6 6.3 V/V
High Gain GAIN ≥ 1.35 V 9.5 10 10.5 V/V

7.8 AC Characteristics

TA = 25°C, VDD = 3.6 V, RL = 8 Ω, L = 4.7 μH (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tSTART Start up time 1.8 V ≤ VDD ≤ 5.5 V, CIN ≤ 1 μF 7.5 ms
η Efficiency THD+N = 1%, VCC = 5.5 V, VDD = 3.6 V,
RL= 8 Ω, Pout = 1.7 W, Cboost= 47μF
85%
THD+N = 1%, VCC = 5.5 V, VDD = 4.2 V,
RL = 8 Ω, Pout = 1.7 W
87.5%
Thermal Shutdown Threshold 150 °C

7.9 Class D Amplifier AC Characteristics

TA = 25°C, VDD = 3.6V, RL = 8 Ω, L = 4.7μH (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
KSVR
Class-D
Output referred power supply rejection ratio VDD = 3.6 V, VCC = 5.5V, 200 mVPP ripple,
f = 217 Hz
–95 dB
THD+N
Class-D
Total harmonic distortion + noise f = 1 kHz, Po = 1.7 W, VCC = 5.5 V 1%
f = 1 kHz, Po = 1.2 W, VCC = 4.5 V 1%
f = 1 kHz, Po = 2.2 W, VCC = 5.5 V 10%
f = 1 kHz, Po = 1 W, VCC = 5.5 V 0.1%
Vn
Class-D
Output integrated noise floor Av = 6 dB (2V/V) 31 μVrms
Output integrated noise floor A-weighted Av = 6 dB (2V/V) 23
PO Maximum output power THD+N = 10%, VCC = 5.5 V, VDD = 3.6 V , RL = 8 Ω 2.2 W
THD+N = 1%, VCC = 5.5 V, VDD = 3.6 V , RL = 8 Ω 1.7
THD+N = 1%, VCC = 4.5 V, VDD = 3.6 V , RL = 8 Ω 1.2
THD+N = 10%, VCC = 5.5 V, VDD = 3.6 V , RL = 4 Ω 2.7
THD+N = 1%, VCC = 5.5 V, VDD = 3.6 V , RL = 4 Ω 2.2
THD+N = 1%, VCC = 4.5 V, VDD = 3.6 V , RL = 4 Ω 1.9

7.10 Dissipation Ratings

PACKAGE TA  ≤ 25°C DERATING FACTOR(1) TA = 70°C TA = 85°C
16 ball WCSP 1.5 W 12.4 mW/°C 1 W 0.8 W
20 pin QFN 2.5 W 20.1 mW/°C 1.6 W 1.3 W
(1) Derating factor measured with JEDEC High K board.

7.11 Typical Characteristics

TPA2013D1 g001_los520.gif Figure 1. Efficiency vs Output Power
TPA2013D1 g003_los520.gif Figure 3. Power Dissipation vs Output Power
TPA2013D1 g005_los520.gif Figure 5. Supply Current vs Output Power
TPA2013D1 g007_los520.gif Figure 7. Output Power vs Supply Voltage
TPA2013D1 g009_los520.gif Figure 9. Output Power vs Supply Voltage
TPA2013D1 g011_los520.gif Figure 11. Output Power vs Load
TPA2013D1 g013_los520.gif Figure 13. Total Harmonic distortion + Noise vs Output Power
TPA2013D1 g015_los520.gif Figure 15. Total Harmonic Distortion + Noise vs Output Power
TPA2013D1 g017_los520.gif Figure 17. Total Harmonic Distortion + Noise vs Frequency
TPA2013D1 g019_los520.gif Figure 19. Total Harmonic Distortion + Noise vs Frequency
TPA2013D1 g021_los520.gif Figure 21. Total Harmonic Distortion + Noise vs Frequency
TPA2013D1 g023_los520.gif Figure 23. Power Supply Rejection Ratio vs Frequency
TPA2013D1 g025_los520.gif Figure 25. Common-Mode Rejection Ratio vs Frequency
TPA2013D1 g027_los520.gif Figure 27. Boost Efficiency vs Output Current
TPA2013D1 g029_los520.gif Figure 29. Maximum Continuous Output Current vs Supply Voltage (Boost)
TPA2013D1 g002_los520.gif Figure 2. Efficiency vs Output Power
TPA2013D1 g004_los520.gif Figure 4. Power Dissipation vs Output Power
TPA2013D1 g006_los520.gif Figure 6. Supply Current vs Output Power
TPA2013D1 g008_los520.gif Figure 8. Output Power vs Supply Voltage
TPA2013D1 g010_los520.gif Figure 10. Output Power vs Supply Voltage
TPA2013D1 g012_los520.gif Figure 12. Output Power vs Load
TPA2013D1 g014_los520.gif Figure 14. Total Harmonic Distortion + Noise vs Output Power
TPA2013D1 g016_los520.gif Figure 16. Total Harmonic Distortion + Noise vs Frequency
TPA2013D1 g018_los520.gif Figure 18. Total Harmonic Distortion + Noise vs Frequency
TPA2013D1 g020_los520.gif Figure 20. Total Harmonic Distortion + Noise vs Frequency
TPA2013D1 g022_los520.gif Figure 22. Power Supply Rejection Ratio vs Frequency
TPA2013D1 g024_los520.gif Figure 24. Common-Mode Rejection Ratio vs Frequency
TPA2013D1 g026_los520.gif Figure 26. Boost Efficiency vs Output Current
TPA2013D1 g028_los520.gif Figure 28. Boost Efficiency vs Supply Voltage
TPA2013D1 g030_los520.gif Figure 30. Start-Up Time