SLOS649B March   2010  – May 2016 TPA2026D2

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Timing Requirements
    7. 7.7 Dissipation Ratings
    8. 7.8 Operating Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Automatic Gain Control
        1. 9.3.1.1 Fixed Gain
        2. 9.3.1.2 Limiter Level
        3. 9.3.1.3 Compression Ratio
        4. 9.3.1.4 Interaction Between Compression Ratio and Limiter Range
        5. 9.3.1.5 Noise Gate Threshold
        6. 9.3.1.6 Maximum Gain
        7. 9.3.1.7 Attack, Release, and Hold Time
      2. 9.3.2 Operation With DACS and CODECS
      3. 9.3.3 Short-Circuit Auto-Recovery
      4. 9.3.4 Filter-Free Operation and Ferrite Bead Filters
    4. 9.4 Device Functional Modes
      1. 9.4.1 TPA2026D2 AGC Operation
        1. 9.4.1.1 AGC Start-Up Condition
      2. 9.4.2 TPA2026D2 AGC Recommended Settings
    5. 9.5 Programming
      1. 9.5.1 General I2C Operation
      2. 9.5.2 Single and Multiple-Byte Transfers
      3. 9.5.3 Single-Byte Write
      4. 9.5.4 Multiple-Byte Write and Incremental Multiple-Byte Write
      5. 9.5.5 Single-Byte Read
      6. 9.5.6 Multiple-Byte Read
    6. 9.6 Register Maps
      1. 9.6.1 IC Function Control (Address: 1)
      2. 9.6.2 AGC Attack Control (Address: 2)
      3. 9.6.3 AGC Release Control (Address: 3)
      4. 9.6.4 AGC Hold Time Control (Address: 4)
      5. 9.6.5 AGC Fixed Gain Control (Address: 5)
      6. 9.6.6 AGC Control (Address: 6)
      7. 9.6.7 AGC Control (Address: 7)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 TPA2026D2 With Differential Input Signals
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Surface Mount Capacitor
          2. 10.2.1.2.2 Decoupling Capacitor, CS
          3. 10.2.1.2.3 Input Capacitors, CI
        3. 10.2.1.3 Application Curves
      2. 10.2.2 TPA2026D2 With Single-Ended Input Signal
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 Power Supply Decoupling Capacitors
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Pad Size
      2. 12.1.2 Component Location
      3. 12.1.3 Trace Width
    2. 12.2 Layout Example
    3. 12.3 Efficiency and Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information
    1. 14.1 YZH Package Dimensions

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

11 Power Supply Recommendations

The TPA2026D2 is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. Therefore the output voltage range of the power supply should be within this range. The current capability of upper power must not exceed the maximum current limit of the power switch.

11.1 Power Supply Decoupling Capacitors

The TPA2026D2 requires adequate power supply decoupling to ensure a high efficiency operation with low total harmonic distortion (THD). Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 µF, within 2 mm of the VDD/VCCOUT pin. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. In addition to the 0.1-μF ceramic capacitor, is recommended to place a 2.2-µF to 10-µF capacitor on the VDD supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage.