JAJSC84F May   2016  – January 2020 TPA3136AD2 , TPA3136D2

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      概略回路図
  4. 改訂履歴
  5. 概要(続き)
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Switching Characteristics
    7. 8.7 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Fixed Analog Gain
      2. 10.3.2 SD Operation
      3. 10.3.3 PLIMIT
      4. 10.3.4 Spread Spectrum and De-Phase Control
      5. 10.3.5 GVDD Supply
      6. 10.3.6 DC Detect
      7. 10.3.7 PBTL Select
      8. 10.3.8 Short-Circuit Protection and Automatic Recovery Feature
      9. 10.3.9 Thermal Protection
    4. 10.4 Device Functional Modes
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Applications
      1. 11.2.1 Design Requirements
        1. 11.2.1.1 PCB Material Recommendation
        2. 11.2.1.2 PVCC Capacitor Recommendation
        3. 11.2.1.3 Decoupling Capacitor Recommendations
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Ferrite Bead Filter Considerations
        2. 11.2.2.2 Efficiency: LC Filter Required with the Traditional Class-D Modulation Scheme
        3. 11.2.2.3 When to Use an Output Filter for EMI Suppression
        4. 11.2.2.4 Input Resistance
        5. 11.2.2.5 Input Capacitor, Ci
        6. 11.2.2.6 BSN and BSP Capacitors
        7. 11.2.2.7 Differential Inputs
        8. 11.2.2.8 Using Low-ESR Capacitors
      3. 11.2.3 Application Performance Curves
        1. 11.2.3.1 EN55013 Radiated Emissions Results
        2. 11.2.3.2 EN55022 Conducted Emissions Results
  12. 12Power Supply Recommendations
    1. 12.1 Power Supply Decoupling, CS
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14デバイスおよびドキュメントのサポート
    1. 14.1 デバイス・サポート
      1. 14.1.1 デベロッパー・ネットワークの製品に関する免責事項
    2. 14.2 ドキュメントのサポート
      1. 14.2.1 関連資料
    3. 14.3 関連リンク
    4. 14.4 ドキュメントの更新通知を受け取る方法
    5. 14.5 サポート・リソース
    6. 14.6 商標
    7. 14.7 静電気放電に関する注意事項
    8. 14.8 Glossary
  15. 15メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Input Capacitor, Ci

In the typical application, an input capacitor (Ci) is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. In this case, Ci and the input impedance of the amplifier (Zi) form a high-pass filter with the corner frequency determined in Equation 2.

Equation 2. TPA3136D2 TPA3136AD2 q_fc_los469.gif

The value of Ci is important, as it directly affects the bass (low-frequency) performance of the circuit. Consider the example where Zi is 30 kΩ and the specification calls for a flat bass response down to 20 Hz. Equation 2 is reconfigured as Equation 3.

Equation 3. TPA3136D2 TPA3136AD2 q_ci_los469.gif

In this example, Ci is 0.27 µF; so, one would likely choose a value of 0.33 μF as this value is commonly used. A further consideration for this capacitor is the leakage path from the input source through the input network (Ci) and the feedback network to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications as the dc level there is held at 3 V, which is likely higher than the source dc level. Note that it is important to confirm the capacitor polarity in the application. Additionally, lead-free solder can create dc offset voltages and it is important to ensure that boards are cleaned properly.