SLUSFA1 September   2024 TPS1214-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump and Gate Driver Output (VS, GATE, BST, SRC)
      2. 8.3.2 Capacitive Load Driving
        1. 8.3.2.1 Using Low Power Bypass FET (G Drive) for Load Capacitor Charging
        2. 8.3.2.2 Using Main FET (GATE drive) Gate Slew Rate Control
      3. 8.3.3 Overcurrent and Short-Circuit Protection
        1. 8.3.3.1 I2t-Based Overcurrent Protection
          1. 8.3.3.1.1 I2t-Based Overcurrent Protection With Auto-Retry
          2. 8.3.3.1.2 I2t-Based Overcurrent Protection With Latch-Off
        2. 8.3.3.2 Short-Circuit Protection
      4. 8.3.4 Analog Current Monitor Output (IMON)
      5. 8.3.5 NTC based Temperature Sensing (TMP) and Analog Monitor Output (ITMPO)
      6. 8.3.6 Fault Indication and Diagnosis (FLT, SCP_TEST)
      7. 8.3.7 Reverse Polarity Protection
      8. 8.3.8 Undervoltage Protection (UVLO)
    4. 8.4 Device Functional Modes
      1. 8.4.1 State Diagram
      2. 8.4.2 State Transition Timing Diagram
      3. 8.4.3 Power Down
      4. 8.4.4 Shutdown Mode
      5. 8.4.5 Low Power Mode (LPM)
      6. 8.4.6 Active Mode (AM)
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application 1: Driving Power at all times (PAAT) Loads With Automatic Load Wakeup
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application 2: Driving Power at all times (PAAT) Loads With Automatic Load Wakeup and Output Bulk Capacitor Charging
      1. 9.3.1 Design Requirements
      2. 9.3.2 External Component Selection
      3. 9.3.3 Application Curves
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information
    2. 12.2 Mechanical Data

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Reverse Polarity Protection

The TPS1214x-Q1 devices features integrated reverse polarity protection to protect the device from failing during input and output reverse polarity faults. Reverse polarity faults occur during installation and maintenance of the end equipment’s. The device is tolerant to reverse polarity voltages down to –65V both on input and on the output.

TPS12140-Q1 and TPS12142-Q1 variants turn OFF Back to back FETs (GATE) when input reverse battery events –65V is detected to protect the load.

TPS12141-Q1 and TPS12143-Q1 variants integrate GATE drive turn ON when input reverse battery fault in detected down to –45V. This feature is mainly useful for heater loads and enables use of single power FET in main path saving space and BOM cost.

On the output side, the device can see transient negative voltages during regular operation due to output cable harness inductance kickbacks when the switches are turned OFF. In such systems the output negative voltage level is limited by the output side TVS or a diode.