SBVS124A November 2008 – May 2016 TPS2115A-Q1
PRODUCTION DATA.
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VI | Input voltage range | IN1, IN2, D0, D1, ILIM | –0.3 | 6 | V |
VO | Output voltage range | OUT, STAT | –0.3 | 6 | V |
IO(sink) | Output sink current | STAT | 5 | mA | |
IO | Continuous output current | OUT | 1.5 | A | |
PD | Continuous total-power dissipation | See Thermal Information | |||
TA | Operating free-air temperature range | –40 | 85 | °C | |
TJ | Operating virtual-junction temperature range | –40 | 125 | °C | |
Tlead | Lead temperature soldering | 1,6 mm (1/16 inch) from case for 10 seconds | 260 | °C | |
Storage temperature, Tstg | –65 | 150° | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM) | ±2000 | V |
Charged-device model (CDM) | ±500 |
MIN | NOM | MAX | UNIT | ||||
---|---|---|---|---|---|---|---|
VI | Input voltage | IN1 | VI(IN2) ≥ 2.8 V | 1.5 | 5.5 | V | |
VI(IN2) < 2.8 V | 2.8 | 5.5 | |||||
IN2 | VI(IN1) ≥ 2.8 V | 1.5 | 5.5 | ||||
VI(IN1) < 2.8 V | 2.8 | 5.5 | |||||
D0, D1 | 0 | 5.5 | |||||
VIH | High-level input voltage | D0, D1 | 2 | V | |||
VIL | Low-level input voltage | D0, D1 | 0.7 | V | |||
IO | Current limit adjustment range | OUT | 0.63 | 1.25 | A | ||
TA | Operating free-air temperature | –40 | 85 | °C | |||
TJ | Operating virtual-junction temperature range | –40 | 125 | °C |
THERMAL METRIC(1) | TPS2115A-Q1 | UNIT | |
---|---|---|---|
PW (TSSOP) | |||
8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 159.2 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 40.7 | °C/W |
RθJB | Junction-to-board thermal resistance | 90.1 | °C/W |
ψJT | Junction-to-top characterization parameter | 2.1 | °C/W |
ψJB | Junction-to-board characterization parameter | 87.8 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | n/a | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
POWER SWITCH (1) | |||||||
rDS(on) | Drain-source on-state resistance (INx to OUT) | TA = 25°C, IL = 500 mA | VI(IN1) = VI(IN2) = 5.0 V | 84 | 110 | mΩ | |
VI(IN1) = VI(IN2) = 3.3 V | 84 | 110 | |||||
VI(IN1) = VI(IN2) = 2.8 V | 84 | 110 | |||||
TA = 85°C, IL = 500 mA | VI(IN1) = VI(IN2) = 5.0 V | 150 | |||||
VI(IN1) = VI(IN2) = 3.3 V | 150 | ||||||
VI(IN1) = VI(IN2) = 2.8 V | 150 | ||||||
LOGIC INPUTS (D0 AND D1) | |||||||
II | Input current at D0 or D1 | D0 or D1 = high, sink current | 1 | μA | |||
D0 or D1 = low, source current | 0.5 | 1.4 | 5 | ||||
SUPPLY AND LEAKAGE CURRENTS | |||||||
Supply current from IN1 (operating) | D1 = high, D0 = low (IN1 active), VI(IN1) = 5.5 V, VI(IN2) = 3.3 V, IO(OUT) = 0 A | 55 | 90 | μA | |||
D1 = high, D0 = low (IN1 active), VI(IN1) = 3.3 V, VI(IN2) = 5.5 V, IO(OUT) = 0 A | 1 | 12 | |||||
D0 = D1 = low (IN2 active), VI(IN1) = 5.5 V, VI(IN2) = 3.3 V, IO(OUT) = 0 A | 75 | ||||||
D0 = D1 = low (IN2 active), VI(IN1) = 3.3 V, VI(IN2) = 5.5 V, IO(OUT) = 0 A | 1 | ||||||
Supply current from IN2 (operating) | D1 = high, D0 = low (IN1 active), VI(IN1) = 5.5 V, VI(IN2) = 3.3 V, IO(OUT) = 0 A | 1 | μA | ||||
D1 = high, D0 = low (IN1 active), VI(IN1) = 3.3 V, VI(IN2) = 5.5 V, IO(OUT) = 0 A | 75 | ||||||
D0 = D1 = low (IN2 active), VI(IN1) = 5.5 V, VI(IN2) = 3.3 V, IO(OUT) = 0 A | 1 | 12 | |||||
D0 = D1 = low (IN2 active), VI(IN1) = 3.3 V, VI(IN2) = 5.5 V, IO(OUT) = 0 A | 55 | 90 | |||||
Quiescent current from IN1 (standby) | D0 = D1 = high (inactive), IO(OUT) = 0 A | VI(IN1) = 5.5 V, VI(IN2) = 3.3 V | 0.5 | 2 | μA | ||
VI(IN1) = 3.3 V, VI(IN2) = 5.5 V | 1 | ||||||
Quiescent current from IN2 (standby) | D0 = D1 = high (inactive), IO(OUT) = 0 A | VI(IN1) = 5.5 V, VI(IN2) = 3.3 V | 1 | μA | |||
VI(IN1) = 3.3 V, VI(IN2) = 5.5 V | 0.5 | 2 | |||||
Forward leakage current from IN1 (measured from OUT to GND) | D0 = D1 = high (inactive), VI(IN1) = 5.5 V, IN2 open, VO(OUT) = 0 V (shorted), TA = 25°C |
0.1 | 5 | μA | |||
Forward leakage current from IN2 (measured from OUT to GND) | D0 = D1= high (inactive), VI(IN2) = 5.5 V, IN1 open, VO(OUT) = 0 V (shorted), TA = 25°C |
0.1 | 5 | μA | |||
Reverse leakage current to INx (measured from INx to GND) | D0 = D1 = high (inactive), VI(INx) = 0 V, VO(OUT) = 5.5 V, TA = 25°C | 0.3 | 5 | μA | |||
CURRENT LIMIT CIRCUIT | |||||||
Current limit accuracy | RILIM = 400 Ω | 0.95 | 1.25 | 1.56 | A | ||
RILIM = 700 Ω | 0.47 | 0.71 | 0.99 | ||||
td | Current limit settling time | Time for short-circuit output current to settle within 10% of its steady state value | 1 | ms | |||
II | Input current at ILIM | VI(ILIM) = 0 V, IO(OUT) = 0 A | –15 | 0 | μA | ||
UVLO | |||||||
IN1 and IN2 UVLO | Falling edge | 1.15 | 1.25 | V | |||
Rising edge | 1.30 | 1.35 | |||||
IN1 and IN2 UVLO hysteresis | 30 | 57 | 65 | mV | |||
Internal VDD UVLO (the higher of IN1 and IN2) | Falling edge | 2.4 | 2.53 | V | |||
Rising edge | 2.58 | 2.8 | |||||
Internal VDD UVLO hysteresis | 30 | 50 | 75 | mV | |||
UVLO deglitch for IN1, IN2 | Falling edge | 110 | μs | ||||
REVERSE CONDUCTION BLOCKING | |||||||
ΔVIO(blk) | Minimum input-to-output voltage difference to block switching | D0 = D1 = high, VI(INx) = 3.3 V. Connect OUT to a 5-V supply through a series 1-kΩ resistor. Set D0 = low. Slowly decrease the supply voltage until OUT connects to IN1. | 80 | 100 | 120 | mV | |
THERMAL SHUTDOWN | |||||||
Thermal shutdown threshold | TPS2115A-Q1 device is in current limit. | 135 | °C | ||||
Recovery from thermal shutdown | TPS2115A-Q1 device is in current limit. | 125 | °C | ||||
Hysteresis | 10 | °C | |||||
IN2-IN1 COMPARATORS | |||||||
Hysteresis of IN2-IN1 comparator | 0.1 | 0.2 | V | ||||
Deglitch of IN2-IN1 comparator (both ↑↓) |
10 | 20 | 50 | μs | |||
STAT OUTPUT | |||||||
Ileak | Leakage current | VO(STAT) = 5.5 V | 0.01 | 1 | μA | ||
Vsat | Saturation voltage | II(STAT) = 2 mA, IN1 switch is on | 0.13 | 0.4 | V | ||
td | Deglitch time (falling edge only) |
150 | μs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
Power Switch | |||||||
tr | Output rise time from an enable | VI(IN1) = VI(IN2) = 5 V | TA = 25°C, CL = 1 μF, IL = 500 mA, See Figure 1(a) | 1 | 1.8 | 3 | ms |
tf | Output fall time from a disable | VI(IN1) = VI(IN2) = 5 V | TA = 25°C, CL = 1 μF, IL = 500 mA, See Figure 1(a) | 0.5 | 1 | 2 | ms |
tt | Transition time | IN1 to IN2 transition, VI(IN1) = 3.3 V, VI(IN2) = 5 V |
TA = 85°C, CL = 10 μF, IL = 500 mA [Measure transition time as 10%-90% rise time or from 3.4 V to 4.8 V on VO(OUT)], See Figure 1(b) | 40 | 60 | μs | |
IN2 to IN1 transition, VI(IN1) = 5 V, VI(IN2) = 3.3 V |
40 | 60 | |||||
tPLH1 | Turn-on propagation delay from enable | VI(IN1) = VI(IN2) = 5 V, Measured from enable to 10% of VO(OUT) | TA = 25°C, CL = 10 μF, IL = 500 mA, See Figure 1(a) | 1 | ms | ||
tPHL1 | Turn-off propagation delay from a disable | VI(IN1) = VI(IN2) = 5 V, Measured from disable to 90% of VO(OUT) | TA = 25°C, CL = 10 μF, IL = 500 mA, See Figure 1(a) | 5 | ms | ||
tPLH2 | Switch-over rising propagation delay | Logic 1 to Logic 0 transition on D1, VI(IN1) = 1.5 V, VI(IN2) = 5 V, VI(D0) = 0 V, Measured from D1 to 10% of VO(OUT) | TA = 25°C, CL = 10 μF, IL = 500 mA, See Figure 1(c) | 40 | 100 | μs | |
tPHL2 | Switch-over falling propagation delay | Logic 0 to Logic 1 transition on D1, VI(IN1) = 1.5 V, VI(IN2) = 5 V, VI(D0) = 0 V, Measured from D1 to 90% of VO(OUT) | TA = 25°C, CL = 10 μF, IL = 500 mA, See Figure 1(c) | 2 | 5 | 10 | ms |