JAJSM08B December   2022  – August 2024 TPS281C30

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Device Functional Modes
      1. 8.3.1 Working Mode
    4. 8.4 Feature Description
      1. 8.4.1 Accurate Current Sense
        1. 8.4.1.1 High Accuracy Sense Mode
      2. 8.4.2 Programmable Current Limit
        1. 8.4.2.1 Short-Circuit and Overload Protection
        2. 8.4.2.2 Capacitive Charging
      3. 8.4.3 Inductive-Load Switching-Off Clamp
      4. 8.4.4 Inductive Load Demagnetization
      5. 8.4.5 Full Protections and Diagnostics
        1. 8.4.5.1 Open-Load Detection
        2. 8.4.5.2 Thermal Protection Behavior
        3. 8.4.5.3 Undervoltage Lockout (UVLO) Protection
        4. 8.4.5.4 Overvoltage (OVP) Protection
        5. 8.4.5.5 Reverse Polarity Protection
        6. 8.4.5.6 Protection for MCU I/Os
        7. 8.4.5.7 Diagnostic Enable Function
        8. 8.4.5.8 Loss of Ground
        9. 8.4.5.9 Enhanced EFT Immunity
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 IEC 61000-4-5 Surge
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Selecting RILIM
        2. 9.2.2.2 Selecting RSNS
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 EMC Considerations
      2. 9.4.2 Layout Example
        1. 9.4.2.1 PWP Layout without a GND Network
        2. 9.4.2.2 PWP Layout with a GND Network
        3. 9.4.2.3 RGW Layout with a GND Network
      3. 9.4.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 ドキュメントの更新通知を受け取る方法
    2. 10.2 サポート・リソース
    3. 10.3 Trademarks
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 用語集
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Overview

The TPS281C30 is a single-channel, fully-protected, high-side power switch with an integrated NMOS power FET and charge pump rated to 60V DC tolerance. Full diagnostics and high-accuracy current-sense features enable intelligent control of the load. Low logic high threshold, VIH, of 1.5V on the input pins allow use of MCU's down to 1.8V. A programmable current-limit function greatly improves the reliability of the whole system. The device diagnostic reporting has two pins to support both digital status and analog current-sense output.

The digital status report is implemented with an open-drain structure on the fault pin. When a fault condition occurs, the pin is pulled down to GND. An external pullup is required to match the microcontroller supply level. High-accuracy current sensing allows a better real-time monitoring effect and more-accurate diagnostics without further calibration. A current mirror is used to source 1 / KSNS of the load current, which is reflected as voltage on the SNS pin. KSNS is a constant value across temperature and supply voltage. The SNS pin can also report a fault by forcing a voltage of VSNSFH that scales with the diagnostic enable voltage so that the max voltage seen by the system's ADC is within an acceptable value. This removes the need for an external zener diode or resistor divider on the SNS pin.

The external high-accuracy current limit allows setting the current limit value by application. It highly improves the reliability of the system by clamping the inrush current effectively under start-up or short-circuit conditions. Also, it can save system costs by reducing PCB trace, connector size, and the preceding power-stage capacity. An internal current limit can also be implemented in this device. The lower value of the external or internal current-limit value is applied.

An active drain to source voltage clamp is built in to address switching off the energy of inductive loads, such as relays, solenoids, pumps, motors, and so forth. During the inductive switching-off cycle, both the energy of the power supply (EBAT) and the load (ELOAD) are dissipated on the high-side power switch itself. With the benefits of process technology and excellent IC layout, the TPS281C30x device can achieve excellent energy dissipation capacity, which can help save the external free-wheeling circuitry in most cases.

The TPS281C30x device can be used as a high-side power switch for a wide variety of resistive, inductive, and capacitive loads, including the low-wattage bulbs, LEDs, relays, solenoids, and heaters. Please note that for driving inductive loads, versions without internal VDS clamp (Ver. C, D, E) would require an external clamp to dissipate the inductive energy at turn-off.