SLUS660I September   2005  – January 2015 TPS40140

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Clock Master and Clock Slave
      2. 8.3.2 Voltage Master and Voltage Slave
      3. 8.3.3 Power Good
      4. 8.3.4 Power-On Reset (POR)
      5. 8.3.5 Overcurrent
      6. 8.3.6 Output Undervoltage Protection
      7. 8.3.7 Output Overvoltage Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Protection and Fault Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Synchronizing a Single Controller to an External Clock
      2. 9.1.2  Split Input Voltage Operation
      3. 9.1.3  Configuring Single and Multiple ICs
        1. 9.1.3.1 Single Device Operation
        2. 9.1.3.2 Multiple Devices
        3. 9.1.3.3 Clock Master, PHSEL, and CLKIO Configurations
          1. 9.1.3.3.1 One Device Operation
          2. 9.1.3.3.2 Two ICs Operation
          3. 9.1.3.3.3 Three ICs Operation
          4. 9.1.3.3.4 Four ICs Operation
          5. 9.1.3.3.5 Six ICs Operation
          6. 9.1.3.3.6 Eight ICs Operation
      4. 9.1.4  Digital Clock Synchronization
        1. 9.1.4.1 Basic Configurations for 2, 4, 6, 8, 12, or 16 Phases
        2. 9.1.4.2 Configuring for Other Number of Phases
      5. 9.1.5  Typical Start-Up Sequence
      6. 9.1.6  Track (Soft-Start Without PreBiased Output)
      7. 9.1.7  Soft-Start With PreBiased Outputs
      8. 9.1.8  Track Function in Configuring a Slave Channel
      9. 9.1.9  Differential Amplifier, U9
      10. 9.1.10 Setting the Output Voltage
      11. 9.1.11 Programmable Input UVLO Protection
      12. 9.1.12 CLKFLT, CLKIO Pin Fault
      13. 9.1.13 PHSEL Pin Fault
      14. 9.1.14 Overtemperature
      15. 9.1.15 Fault Masking Operation
      16. 9.1.16 Setting the Switching Frequency
      17. 9.1.17 Current Sense
      18. 9.1.18 Current Sensing and Balancing
      19. 9.1.19 Overcurrent Detection and Hiccup Mode
      20. 9.1.20 Calculating Overcurrent Protection Level
      21. 9.1.21 Design Examples Information
        1. 9.1.21.1 Inductor DCR Current Sense
    2. 9.2 Typical Application
      1. 9.2.1 Application 1: Dual-Output Configuration from 12 to 3.3 V and 1.5 V DC-DC Converter Using a TPS40140
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Step 1: Inductor Selection
          2. 9.2.1.2.2 Step 2: Output Capacitor Selection
          3. 9.2.1.2.3 Step 3: Input Capacitor Selection
          4. 9.2.1.2.4 Step 4: MOSFET Selection
          5. 9.2.1.2.5 Step 5: Peripheral Component Design
            1. 9.2.1.2.5.1  Switching Frequency Setting (RT Pin 5)
            2. 9.2.1.2.5.2  Output Voltage Setting (FB1 Pin 36)
            3. 9.2.1.2.5.3  Current Sensing Network Design (CS1 Pin 31 and CSRT1 Pin 32)
            4. 9.2.1.2.5.4  Overcurrent Protection (ILIM1 Pin 34)
            5. 9.2.1.2.5.5  VREG (Pin 21)
            6. 9.2.1.2.5.6  BP5 (Pin 8)
            7. 9.2.1.2.5.7  PHSEL (Pin 4)
            8. 9.2.1.2.5.8  VSHARE (Pin 6)
            9. 9.2.1.2.5.9  PGOOD1 (Pin 30)
            10. 9.2.1.2.5.10 UVLO_CE1 (Pin 29)
            11. 9.2.1.2.5.11 Clkio (Pin 28)
            12. 9.2.1.2.5.12 BOOT1 and SW1 (Pin 27 and 25)
            13. 9.2.1.2.5.13 TRK1 (Pin 33)
            14. 9.2.1.2.5.14 DIFFO, VOUT, and GSNS (Pin 1, Pin 2, and Pin 3)
          6. 9.2.1.2.6 Feedback Compensator Design (COMP1 Pin 35)
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Application 2: Two-Phase Single Output Configuration from 12 to 1.5 V DC-DC Converter Using a TPS40140
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Step 1: Output Capacitor Selection
          2. 9.2.2.2.2 Step 2: Input Capacitor Selection
          3. 9.2.2.2.3 Step 3: Peripheral Component Design
            1. 9.2.2.2.3.1 Switching Frequency Setting (Rt Pin 5)
            2. 9.2.2.2.3.2 COMP1 and COMP2 (Pin 35 and Pin 10)
            3. 9.2.2.2.3.3 TRK1 and TRK2 (Pin 33 and Pin 12)
            4. 9.2.2.2.3.4 ILIM1 and ILIM2 (Pin 34 and Pin 11)
            5. 9.2.2.2.3.5 FB1 and FB2 (Pin 36 and Pin 9)
            6. 9.2.2.2.3.6 PHSEL (Pin 4)
            7. 9.2.2.2.3.7 PGOOD1 and PGOOD2 (Pin 30 and Pin 15)
            8. 9.2.2.2.3.8 CLKIO (Pin 28)
            9. 9.2.2.2.3.9 DIFFO, VOUT, and GSNS (Pin 1, Pin 2, and Pin 3)
      3. 9.2.3 Application Curves
    3. 9.3 System Example
      1. 9.3.1 Four-Phase Single Output Configuration from 12 to 1.8 V DC-DC Converter Using Two TPS40140
        1. 9.3.1.1 Step 1: Output Capacitor Selection
        2. 9.3.1.2 Step 2: Input Capacitor Selection
        3. 9.3.1.3 Step 3: Peripheral Component Design
          1. 9.3.1.3.1 Master Module
            1. 9.3.1.3.1.1 Rt (Pin 5)
            2. 9.3.1.3.1.2 COMP1 and COMP2 (Pin 35 and Pin 10)
            3. 9.3.1.3.1.3 TRK1 and TRK2 (Pin 33 and Pin 12)
            4. 9.3.1.3.1.4 ILIM1 and ILIM2 (Pin 34 and Pin 11)
            5. 9.3.1.3.1.5 FB1 and FB2 (Pin 36 and Pin 9)
            6. 9.3.1.3.1.6 PHSEL (Pin 4)
            7. 9.3.1.3.1.7 PGOOD1 and PGOOD2 (Pin 30 and Pin 15)
            8. 9.3.1.3.1.8 CLKIO (Pin 28)
          2. 9.3.1.3.2 Slave Module:
            1. 9.3.1.3.2.1 RT (Pin 5)
            2. 9.3.1.3.2.2 COMP1 and COMP2 (Pin 35 and Pin 10)
            3. 9.3.1.3.2.3 TRK1 and TRK2 (Pin 33 and Pin 12)
            4. 9.3.1.3.2.4 ILIM1 and ILIM2 ( Pin 34 and Pin 11)
            5. 9.3.1.3.2.5 FB1 and FB2 (Pin 36 and Pin 9)
            6. 9.3.1.3.2.6 PHSEL (Pin 4)
            7. 9.3.1.3.2.7 PGOOD1 and PGOOD2 (Pin 30 and Pin 15)
            8. 9.3.1.3.2.8 CLKIO (Pin 28)
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Power Stage
      2. 11.1.2 Device Peripheral
      3. 11.1.3 PowerPAD Layout
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage VDD, UVLO ≤ VDD, RT, SS –0.3 16 V
SW1, SW2 –1 44
SW1, SW2, transient < 50 ns –5
BOOT1, BOOT2, HDRV1, HDRV2 VSW + 6.0
All other pins –0.3 6.0
Output current RT 200 µA
TJ Operating junction temperature –40 150 °C
Tstg Storage temperature –55 150 °C

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Input voltage VDD, UVLO ≤ VDD –0.3 15 V
SW1, SW2 –1 40
BOOT1, BOOT2, HDRV1, HDRV2 VSW + 5.5
All other pins –0.3 5.5
Maximum output current RT 25 µA
Operating free-air temperature –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS40140 UNIT
RHH
(VQFN)
36 PINS
RθJA Junction-to-ambient thermal resistance 30.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 18.4
RθJB Junction-to-board thermal resistance 5.9
ψJT Junction-to-top characterization parameter 0.2
ψJB Junction-to-board characterization parameter 5.9
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.7
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

–40°C ≤ TJ ≤ 85°C, (unless otherwise noted), VVDD = 7 V, VBP5 = 5 V, UVLO_CE1, UCLO_CE2: 10 kΩ, Pullup to BP5,
ƒSW = 300 kHz, unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VDD INPUT SUPPLY
Operating voltage range 4.5 12 15 V
Shutdown current UVLO_CE1 = UVLO_CE2 = GND 1 10 µA
BP5 INPUT SUPPLY
Operating voltage range 4.5 5.0 5.5 V
BP5 operating current 2 3 5 mA
Rising BP5 turnon 4.0 4.25 4.45 V
BP5 turnoff hysteresis 100 220 400 mV
Standby mode current(1) UVLO_CEx = 1.7 V 2.8 mA
VREG
7 V < VDD < 15 V 4.5 5.1 5.5 V
Output current 0 100 mA
OSCILLATOR, RT
Phase frequency accuracy RRT= 110 kΩ 300 kHz
Phase frequency set range 150 1000 kHz
RT(1) 25 kΩ ≤ RRT ≤ 500 kΩ 0.7 V
UNDERVOLTAGE LOCKOUT (UVLO_CE1, UVLO_CE2)
Enable threshold, standby mode Internal 5VREG regulator enabled 0.5 1.0 1.5 V
UVLO threshold PWM Switching enabled 1.9 2 2.1 V
UVLO hysteresis At the UVLO_CEx pin 40 mV
UVLO_CE1, UVLO_CE2 bias current(1) 1 μA
PWM
DMAX Maximum duty cycle per channel(1) 2-phase, 4-phase, 8-phase, or 16-phase 87.5%
3-phase, 6-phase, or 12-phase 83.3%
tON(min) Minimum controllable pulse width 70 ns
PWM COMPARATOR
Input offset voltage –3 3 mV
VSHARE
IVSHR = 0 1.785 1.8 1.815 V
See(1) –30 μA < iVSHR < 50 μA 1.785 1.8 1.815 V
ERROR AMPLIFIER CH1, ERROR AMPLIFIER CH2
Input common mode range(1) 0 0.7 2.0 V
Input bias current(1) VFB = 0.7 V 10 nA
FBx voltage(1) 0.6965 0.700 0.7035 V
Output source current VCOMP = 1.1 V, VFB = 0.6 V 1 2 mA
Output sink current VCOMP = 1.1 V, VFB = BP5 1 2 mA
BW(1) 8 12 MHz
Open loop gain(1) 60 90 dB
VOLTAGE TRACKING (TRK1, TRK2)
SS source current After EN, before PWM and during hiccup mode 5 6.0 7.3 µA
After first PWM pulse 10 12.5 15
Fault enable threshold(1) 1.4 V
Internal clamp voltage(1) 2.4 V
SS sink resistance(1) Pulldown resistance 1
CURRENT SENSE AMPLIFIERS (CS1, CS2)
Differential input voltage –60 60 mV
Input offset voltage CS1, CS2, trimmed –2.0 0 2.0 mV
Ac Gain transfer to PWM COMP 5 mV < VCS < 60 mV, VCSRT = 1.5 V 12 13 14 V/V
Input common mode(1) 0 5.8 V
CSA Input bias current 100 nA
DIFFERENTIAL AMPLIFIER (DIFFO)
Gain 1.0 V < VOUT < 5.8 V 0.997 1 1.003 V/V
Input common mode range(1) 0 5.8 V
Output source current(1) VOUT – VVGSNS = 2 V, VDIFFO > 1.98 V,
VDD-VOUT > 2 V
2 mA
Output source current(1) VOUT – VVGSNS = 2 V, VDIFFO > 2.02 V VDD – VOUT = 1 V 1
Output sink current(1) VOUT – VVGSNS = 2 V,
VDIFFO > 2.02 V
2
Unity gain bandwidth(1) 5 8 MHz
Input Impedance, non inverting(1) VOUT to GND 60
Input Impedance, inverting(1) GSNS to DIFFO 60
GATE DRIVERS
HDRV1, HDRV2 source on-resistance VBOOT1, VBOOT2 = 5 V, VSW1 = VSW2 = 0 V,
Sourcing 100 mA
1 2 3 Ω
HDRV1, HDRV2 sink on-resistance VVREG = 5 V, VSW1 = VSW2 = 0 V,
Sinking 100 mA
0.5 1.2 2
LDRV1, LDRV2 source on-resistance VVREG = 5 V, VSW1 = VSW2 = 0 V,
Sourcing 100 mA
1 2 3
LDRV1, LDRV2 sink on-resistance VVREG = 5 V, VSW1 = VSW2 = 0 V,
Sinking 100 mA
0.3 0.65 1
tRISE HDRVx rise time(1) CLOAD= 3.3 nF 25 75 ns
tFALL HDRVx fall time(1) CLOAD= 3.3 nF 25 75
tRISE LDRVx rise time(1) CLOAD= 3.3 nF 25 75
tFALL LDRVx fall time(1) CLOAD= 3.3 nF 20 60
Minimum controllable on-time CLOAD= 3.3 nF 50
OUTPUT UNDERVOLTAGE FAULT
VFB relative to VREF –19% –16.5% –14%
Undervoltage delay(1) 3 µs
CURRENT LIMIT
IILIM Output current 18.8 20 21.2 µA
POWER GOOD
PGOOD transition low threshold VFB rising relative to VREF 10% 12.5% 15%
PGOOD transition low threshold VFB falling relative to VREF –15% –12.5% –10%
PGOOD trip hysteresis 2% 5%
PGOOD delay(1) 10 µs
Low level output voltage, VOL IPGOOD = 4 mA 0.35 0.4 V
PGOOD bias current VPGOOD= 5.0 V –2 1 2 µA
RAMP
Ramp amplitude(1) 0.421 0.5 0.526 V
VIN BALANCE
VIN balance gain, AVB 0.23 0.25 0.27 V/V
THERMAL SHUTDOWN
Shutdown temperature(1) 155 °C
Hysteresis(1) 30
DIGITAL CLOCK SIGNAL (CLKIO)
Pullup resistance(1) IOH = 5 mA 27 Ω
Pulldown resistance(1) IOL = 10 mA 27 Ω
Output leakage(1) Tri-state 1 µA
(1) Specified by design. Not production tested.

7.6 Typical Characteristics

bp5off_v_t_lus660.gif
Figure 1. BP5 Turnoff Hysteresis Voltage vs Temperature
csgain_v_t_lus660.gif
Figure 3. Current Sense Gain vs Temperature
gain_v_t_lus660.gif
Figure 5. Differential Amplifier Voltage Gain vs Temperature
iddq_vs_t_lus660.gif
Figure 7. Shutdown Quiescent Current vs Temperature
offset_v_t_lus660.gif
Figure 9. Differential Amplifier Input Offset Voltage vs Temperature
rldrv_v_t_lus660.gif
Figure 11. LDRV Sink Resistance vs Temperature
vreg_v_t_lus660.gif
Figure 13. VREG Output Voltage vs Temperature
vuvlo_v_t_lus660.gif
Figure 15. UVLO_CEX Threshold Voltage vs Temperature
bp5on_v_t_lus660.gif
Figure 2. BP5 Turnon Threshold Voltage vs Temperature
fosc_v_t_lus660.gif
Figure 4. Oscillator Frequency vs Temperature
ibp5_v_t_lus660.gif
Figure 6. BP5 Current vs Temperature
iss_v_t_lus660.gif
Figure 8. TRKX Soft Start Current vs Temperature
rhdrv_v_t_lus660.gif
Figure 10. HDRV Source and Sink Resistance vs Temperature
vfb_v_t_lus660.gif
Figure 12. Feedback Voltage vs Temperature
vshare_v_t_lus660.gif
Figure 14. VSHARE Voltage vs Temperature