JAJSGM5 December   2018 TPS54340B

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      概略回路図
      2.      効率と負荷電流との関係
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Fixed Frequency PWM Control
      2. 8.3.2  Slope Compensation Output Current
      3. 8.3.3  Pulse Skip Eco-mode
      4. 8.3.4  Low Dropout Operation and Bootstrap Voltage (BOOT)
      5. 8.3.5  Error Amplifier
      6. 8.3.6  Adjusting the Output Voltage
      7. 8.3.7  Enable and Adjusting Undervoltage Lockout
      8. 8.3.8  Internal Soft Start
      9. 8.3.9  Constant Switching Frequency and Timing Resistor (RT/CLK) pin)
      10. 8.3.10 Accurate Current Limit Operation and Maximum Switching Frequency
      11. 8.3.11 Synchronization to RT/CLK pin
      12. 8.3.12 Overvoltage Protection
      13. 8.3.13 Thermal Shutdown
      14. 8.3.14 Small Signal Model for Loop Response
      15. 8.3.15 Simple Small Signal Model for Peak-Current-Mode Control
      16. 8.3.16 Small Signal Model for Frequency Compensation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation with VIN ≤ 4.5 V (Minimum VIN)
      2. 8.4.2 Operation with EN Control
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application: Buck Converter
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedures
        1. 9.2.2.1  Custom Design with WEBENCH® Tools
        2. 9.2.2.2  Selecting the Switching Frequency
        3. 9.2.2.3  Output Inductor Selection (LO)
        4. 9.2.2.4  Output Capacitor
        5. 9.2.2.5  Catch Diode
        6. 9.2.2.6  Input Capacitor
        7. 9.2.2.7  Bootstrap Capacitor Selection
        8. 9.2.2.8  Undervoltage Lockout Setpoint
        9. 9.2.2.9  Output Voltage and Feedback Resistors Selection
        10. 9.2.2.10 Minimum VIN
        11. 9.2.2.11 Compensation
        12. 9.2.2.12 Discontinuous Conduction Mode and Eco-mode Boundary
        13. 9.2.2.13 Power Dissipation
      3. 9.2.3 Application Curves
    3. 9.3 Other Applications
      1. 9.3.1 Inverting Power
      2. 9.3.2 Split-Rail Power Supply
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Estimated Circuit Area
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 12.1.2 WEBENCH®ツールによるカスタム設計
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 コミュニティ・リソース
    4. 12.4 商標
    5. 12.5 静電気放電に関する注意事項
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Pulse Skip Eco-mode

The TPS54340B operates in a pulse-skipping Eco-mode at light load currents to improve efficiency by reducing switching and gate drive losses. If the output voltage is within regulation and the peak switch current at the end of any switching cycle is below the pulse-skipping-current threshold, the device enters Eco-mode. The pulse-skipping-current threshold is the peak switch current level corresponding to a nominal COMP voltage of 600 mV.

When in Eco-mode, the COMP pin voltage is clamped at 600 mV and the high side MOSFET is inhibited. Since the device is not switching, the output voltage begins to decay. The voltage control loop responds to the falling output voltage by increasing the COMP pin voltage. The high side MOSFET is enabled and switching resumes when the error amplifier lifts COMP above the pulse skipping threshold. The output voltage recovers to the regulated value, and COMP eventually falls below the Eco-mode pulse skipping threshold at which time the device again enters Eco-mode. The internal PLL remains operational when in Eco-mode. When operating at light load currents in Eco-mode, the switching transitions occur synchronously with the external clock signal.

During Eco-mode operation, the TPS54340B senses and controls peak switch current, not the average load current. Therefore the load current at which the device enters Eco-mode is dependent on the output inductor value. The circuit in Figure 32 enters Eco-mode at about 24-mA output current. As the load current approaches zero, the device enters a pulse-skip mode during which it draws only 146-μA input quiescent current.