JAJSQT1 July   2024 TPS546E25

ADVANCE INFORMATION  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  D-CAP4 Control
        1. 6.3.1.1 Loop Compensation
      2. 6.3.2  Internal VCC LDO and Using an External Bias on VCC Pin and VDRV Pin
      3. 6.3.3  Input Undervoltage Lockout (UVLO)
        1. 6.3.3.1 Fixed VCC_OK UVLO
        2. 6.3.3.2 Fixed VDRV UVLO
        3. 6.3.3.3 Programmable PVIN UVLO
        4. 6.3.3.4 Control (CNTL)Enable
      4. 6.3.4  Differential Remote Sense and Internal, External Feedback Divider
      5. 6.3.5  Set the Output Voltage and VORST#
      6. 6.3.6  Start-Up and Shutdown
      7. 6.3.7  Dynamic Voltage Slew Rate
      8. 6.3.8  Set Switching Frequency
      9. 6.3.9  Switching Node (SW)
      10. 6.3.10 Overcurrent Limit and Low-side Current Sense
      11. 6.3.11 Negative Overcurrent Limit
      12. 6.3.12 Zero-Crossing Detection
      13. 6.3.13 Input Overvoltage Protection
      14. 6.3.14 Output Overvoltage and Undervoltage Protection
      15. 6.3.15 Overtemperature Protection
      16. 6.3.16 Telemetry
    4. 6.4 Device Functional Modes
      1. 6.4.1 Forced Continuous-Conduction Mode
      2. 6.4.2 DCM Light Load Operation
      3. 6.4.3 Powering the Device From a 12V Bus
      4. 6.4.4 Powering the Device From a Split-rail Configuration
      5. 6.4.5 Pin Strapping
        1. 6.4.5.1 Programming MSEL1
        2. 6.4.5.2 Programming PMB_ADDR
        3. 6.4.5.3 Programming MSEL2
        4. 6.4.5.4 Programming VSEL\FB
    5. 6.5 Programming
      1. 6.5.1 Supported PMBus Commands
  8. Register Maps
    1. 7.1  Conventions for Documenting Block Commands
    2. 7.2  (01h) OPERATION
    3. 7.3  (02h) ON_OFF_CONFIG
    4. 7.4  (03h) CLEAR_FAULTS
    5. 7.5  (04h) PHASE
    6. 7.6  (09h) P2_PLUS_WRITE
    7. 7.7  (0Ah) P2_PLUS_READ
    8. 7.8  (0Eh) PASSKEY
    9. 7.9  (10h) WRITE_PROTECT
    10. 7.10 (15h) STORE_USER_ALL
    11. 7.11 (16h) RESTORE_USER_ALL
    12. 7.12 (19h) CAPABILITY
    13. 7.13 (1Bh) SMBALERT_MASK
    14. 7.14 (20h) VOUT_MODE
    15. 7.15 (21h) VOUT_COMMAND
    16. 7.16 (22h) VOUT_TRIM
    17. 7.17 (24h) VOUT_MAX
    18. 7.18 (25h) VOUT_MARGIN_HIGH
    19. 7.19 (26h) VOUT_MARGIN_LOW
    20. 7.20 (27h) VOUT_TRANSITION_RATE
    21. 7.21 (29h) VOUT_SCALE_LOOP
    22. 7.22 (2Ah) VOUT_SCALE_MONITOR
    23. 7.23 (2Bh) VOUT_MIN
    24. 7.24 (33h) FREQUENCY_SWITCH
    25. 7.25 (35h) VIN_ON
    26. 7.26 (36h) VIN_OFF
    27. 7.27 (39h) IOUT_CAL_OFFSET
    28. 7.28 (40h) VOUT_OV_FAULT_LIMIT
    29. 7.29 (41h) VOUT_OV_FAULT_RESPONSE
    30. 7.30 (42h) VOUT_OV_WARN_LIMIT
    31. 7.31 (43h) VOUT_UV_WARN_LIMIT
    32. 7.32 (44h) VOUT_UV_FAULT_LIMIT
    33. 7.33 (45h) VOUT_UV_FAULT_RESPONSE
    34. 7.34 (46h) IOUT_OC_FAULT_LIMIT
    35. 7.35 (48h) IOUT_OC_LV_FAULT_LIMIT
    36. 7.36 (49h) IOUT_OC_LV_FAULT_RESPONSE
    37. 7.37 (4Ah) IOUT_OC_WARN_LIMIT
    38. 7.38 (4Fh) OT_FAULT_LIMIT
    39. 7.39 (50h) OT_FAULT_RESPONSE
    40. 7.40 (51h) OT_WARN_LIMIT
    41. 7.41 (55h) VIN_OV_FAULT_LIMIT
    42. 7.42 (60h) TON_DELAY
    43. 7.43 (61h) TON_RISE
    44. 7.44 (64h) TOFF_DELAY
    45. 7.45 (65h) TOFF_FALL
    46. 7.46 (78h) STATUS_BYTE
    47. 7.47 (79h) STATUS_WORD
    48. 7.48 (7Ah) STATUS_VOUT
    49. 7.49 (7Bh) STATUS_IOUT
    50. 7.50 (7Ch) STATUS_INPUT
    51. 7.51 (7Dh) STATUS_TEMPERATURE
    52. 7.52 (7Eh) STATUS_CML
    53. 7.53 (7Fh) STATUS_OTHER
    54. 7.54 (80h) STATUS_MFR_SPECIFIC
    55. 7.55 (88h) READ_VIN
    56. 7.56 (8Bh) READ_VOUT
    57. 7.57 (8Ch) READ_IOUT
    58. 7.58 (8Dh) READ_TEMPERATURE_1
    59. 7.59 (98h) PMBUS_REVISION
    60. 7.60 (99h) MFR_ID
    61. 7.61 (9Ah) MFR_MODEL
    62. 7.62 (9Bh) MFR_REVISION
    63. 7.63 (ADh) IC_DEVICE_ID
    64. 7.64 (AEh) IC_DEVICE_REV
    65. 7.65 (D1h) SYS_CFG_USER1
    66. 7.66 (D2h) PMBUS_ADDR
    67. 7.67 (D4h) COMP
    68. 7.68 (D5h) VBOOT_OFFSET_1
    69. 7.69 (D6h) STACK_CONFIG
    70. 7.70 (D8h) PIN_DETECT_OVERRIDE
    71. 7.71 (D9h) NVM_CHECKSUM
    72. 7.72 (DAh) READ_TELEMETRY
    73. 7.73 (79h) STATUS_ALL
    74. 7.74 (DDh) EXT_WRITE_PROTECTION
    75. 7.75 (A4h) IMON_CAL
    76. 7.76 (FCh) FUSION_ID0
    77. 7.77 (FDh) FUSION_ID1
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Input Capacitor Selection
        2. 8.2.3.2 Inductor Selection
        3. 8.2.3.3 Output Capacitor Selection
        4. 8.2.3.4 Compensation Selection
        5. 8.2.3.5 VCC and VRDV Bypass Capacitors
        6. 8.2.3.6 BOOT Capacitor Selection
        7. 8.2.3.7 VOSNS and GOSNS Capacitor Selection
        8. 8.2.3.8 PMBus Address Resistor Selection
      4. 8.2.4 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Thermal Performance on TPS546E25EVM
  10. Device and Documentation Support
    1. 9.1 ドキュメントの更新通知を受け取る方法
    2. 9.2 サポート・リソース
    3. 9.3 Trademarks
    4. 9.4 静電気放電に関する注意事項
    5. 9.5 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Output Capacitor Selection

Selecting the output capacitance for the converter involves a number of considerations. Closed loop stability and load transient response are the two main goals. From the perspective of loop stability, the impedance of the output capacitance must take into account not only the value of the capacitor, but the ESR and ESL as well. The ESR provides a zero to the filter transfer function at

Equation 14. Fz = 1 / (2pi × ESR × C)

and the ESL provides a second zero at

Equation 15. Fz2 = 1 / (2pi × sqrt (ESL × C))

In selecting the output capacitance of the output filter, often two or three types of capacitors are used.

The selection of output capaciatance to support load transient response is the next consideration. The capacitance to minimize an output voltage overshoot is calculated as

Equation 16. Cout > (L × Idrop^2) / (vout_overshoot^2-vout_nominal^2)

This is the energy in the inductor being transferred to the energy difference between the nominal output voltage and the peak overshoot output voltage.

In many cases, with a 3% output voltage overshoot requirement, the resulting LC corner frequency is on the order of 1% to 1.5% of the switching frequency.

The fast load transient response of D-CAP4 largely addresses the case where there is a load increase and a voltage undershoot. However, there are cases where, during a load step increase, the minimum OFF time of the converter limits the ability of the converter to increase the switching frequency fast enough to maintain regulation. This can be true for higher output voltages and higher nominal switching frequencies.

In this design, 8 × 390μF SP caps and 20 × 47μF ceramic caps are used to support a 50A load step with 100A/μs slew rate with a +/–3% output voltage regulation.