JAJSDJ4D March   2016  – July 2017 TPS548D22

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 40-A FET
      2. 8.3.2 On-Resistance
      3. 8.3.3 Package Size, Efficiency and Thermal Performance
      4. 8.3.4 Soft-Start Operation
      5. 8.3.5 VDD Supply Undervoltage Lockout (UVLO) Protection
      6. 8.3.6 EN_UVLO Pin Functionality
      7. 8.3.7 Fault Protections
        1. 8.3.7.1 Current Limit (ILIM) Functionality
        2. 8.3.7.2 VDD Undervoltage Lockout (UVLO)
        3. 8.3.7.3 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)
        4. 8.3.7.4 Out-of-Bounds Operation
        5. 8.3.7.5 Overtemperature Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 DCAP3 Control Topology
      2. 8.4.2 DCAP Control Topology
    5. 8.5 Programming
      1. 8.5.1 Programmable Pin-Strap Settings
        1. 8.5.1.1 Frequency Selection (FSEL) Pin
        2. 8.5.1.2 VSEL Pin
        3. 8.5.1.3 DCAP3 Control and Mode Selection
          1. 8.5.1.3.1 Application Workaround to Support 4-ms and 8-ms SS Settings
      2. 8.5.2 Programmable Analog Configurations
        1. 8.5.2.1 RSP/RSN Remote Sensing Functionality
          1. 8.5.2.1.1 Output Differential Remote Sensing Amplifier
        2. 8.5.2.2 Power Good (PGOOD Pin) Functionality
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 TPS548D22 1.5-V to 16-V Input, 1-V Output, 40-A Converter
      2. 9.2.2 Design Requirements
      3. 9.2.3 Design Procedure
        1. 9.2.3.1  Switching Frequency Selection
        2. 9.2.3.2  Inductor Selection
        3. 9.2.3.3  Output Capacitor Selection
          1. 9.2.3.3.1 Minimum Output Capacitance to Ensure Stability
          2. 9.2.3.3.2 Response to a Load Transient
          3. 9.2.3.3.3 Output Voltage Ripple
        4. 9.2.3.4  Input Capacitor Selection
        5. 9.2.3.5  Bootstrap Capacitor Selection
        6. 9.2.3.6  BP Pin
        7. 9.2.3.7  R-C Snubber and VIN Pin High-Frequency Bypass
        8. 9.2.3.8  Optimize Reference Voltage (VSEL)
        9. 9.2.3.9  MODE Pin Selection
        10. 9.2.3.10 Overcurrent Limit Design.
      4. 9.2.4 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Mounting and Thermal Profile Recommendation
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 デベロッパー・ネットワークの製品に関する免責事項
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 コミュニティ・リソース
    4. 12.4 商標
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 Glossary
  13. 13メカニカル、パッケージ、および注文情報
  14. 14Package Option Addendum
    1. 14.1 Packaging Information
    2. 14.2 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
Input voltage PVIN –0.3 25 V
VDD –0.3 25
BOOT –0.3 34
BOOT to SW DC –0.3 7.7
< 10 ns –0.3 9.0
NU –0.3 6
EN_UVLO, VOSNS, MODE, FSEL, ILIM –0.3 7.7
RSP, RESV_TRK, VSEL –0.3 3.6
RSN –0.3 0.3
PGND, AGND, DRGND –0.3 0.3
SW DC –0.3 25
< 10 ns –5 27
Output voltage PGOOD, BP –0.3 7.7 V
Junction temperature, TJ –55 150 °C
Storage temperature, Tstg –55 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to the network ground terminal unless otherwise noted.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage PVIN 1.5 16 V
VDD 4.5 22
BOOT –0.1 24.5
BOOT to SW DC –0.1 6.5
< 10 ns –0.1 7
NU –0.1 5.5
EN_UVLO, VOSNS, MODE, FSEL, ILIM –0.1 5.5
RSP, RESV_TRK, VSEL –0.1 3.3
RSN –0.1 0.1
PGND, AGND, DRGND –0.1 0.1
SW DC –0.1 18
< 10 ns –5 27
Output voltage PGOOD, BP –0.1 7 V
Junction temperature, TJ –40 125 °C

Thermal Information

THERMAL METRIC(1) TPS548D22 UNIT
RVF (LQFN-CLIP)
(40 PINS)
RθJA Junction-to-ambient thermal resistance 28.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 18.3 °C/W
RθJB Junction-to-board thermal resistance 3.6 °C/W
ψJT Junction-to-top characterization parameter 0.96 °C/W
ψJB Junction-to-board characterization parameter 3.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.6 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)
PARAMETER TEST CONDITION MIN TYP MAX UNIT
MOSFET ON-RESISTANCE (RDS(on))
RDS(on) High-side FET (VBOOT – VSW) = 5 V, ID = 25 A, TJ = 25°C 2.9
Low-side FET VVDD = 5 V, ID = 25 A, TJ = 25°C 1.2
INPUT SUPPLY AND CURRENT
VVDD VDD supply voltage Nominal VDD voltage range 4.5 22 V
IVDD VDD bias current No load, power conversion enabled (no switching), TA = 25°C, 2.0 mA
IVDDSTBY VDD standby current No load, power conversion disabled, TA = 25°C 700 µA
UNDERVOLTAGE LOCKOUT
VVDD_UVLO VDD UVLO rising threshold 4.23 4.25 4.34 V
VVDD_UVLO(HYS) VDD UVLO hysteresis 0.2 V
VEN_ON_TH EN_UVLO on threshold 1.45 1.6 1.75 V
VEN_HYS EN_UVLO hysteresis 270 300 340 mV
IEN_LKG EN_UVLO input leakage current VEN_UVLO = 5 V –1 0 1 µA
INTERNAL REFERENCE VOLTAGE AND RANGE
VINTREF Internal REF voltage 900.4 mV
VINTREFTOL Internal REF voltage tolerance –40°C ≤ TJ ≤ 125°C –0.5% 0.5%
VINTREF Internal REF voltage range 0.6 1.2 V
OUTPUT VOLTAGE
VIOS_LPCMP Loop comparator input offset voltage(1) –2.5 2.5 mV
IRSP RSP input current VRSP = 600 mV –1 1 µA
IVO(dis) VO discharge current VVO = 0.5 V, power conversion disabled 8 12 mA
DIFFERENTIAL REMOTE SENSE AMPLIFIER
fUGBW Unity gain bandwidth(1) 5 7 MHz
A0 Open loop gain(1) 75 dB
SR Slew rate(1) ±4.7 V/µsec
VIRNG Input range(1) –0.2 1.8 V
VOFFSET Input offset voltage(1) –3.5 3.5 mV
INTERNAL BOOT STRAP SWITCH
VF Forward voltage VBP-BOOT, IF = 10 mA, TA = 25°C 0.1 0.2 V
IBOOT VBST leakage current VBOOT = 30 V, VSW = 25 V, TA = 25°C 0.01 1.5 µA
SWITCHING FREQUENCY
fSW VO switching frequency(2) VIN = 12 V, VVO = 1 V, TA = 25°C 380 425 475 kHz
585 650 740
790 875 995
950 1050 1250
tON(min) Minimum on time(1) 60 ns
tOFF(min) Minimum off time(1) DRVH falling to rising 300 ns
MODE, VSEL, FSEL DETECTION
VDETECT_TH MODE, VSEL, and FSEL detection voltage VBP = 2.93 V,
RHIGH = 100 kΩ
Open VBP V
RLOW = 187 kΩ 1.9091
RLOW = 165 kΩ 1.8243
RLOW = 147 kΩ 1.7438
RLOW = 133 kΩ 1.6725
RLOW = 121 kΩ 1.6042
RLOW = 110 kΩ 1.5348
RLOW = 100 kΩ 1.465
RLOW = 90.9 kΩ 1.3952
RLOW = 82.5 kΩ 1.3245
RLOW = 75 kΩ 1.2557
RLOW = 68.1 kΩ 1.187
RLOW = 60.4 kΩ 1.1033
RLOW = 53.6 kΩ 1.0224
RLOW = 47.5 kΩ 0.9436
RLOW = 42.2 kΩ 0.8695
RLOW = 37.4 kΩ 0.7975
RLOW = 33.2 kΩ 0.7303
RLOW = 29.4 kΩ 0.6657
RLOW = 25.5 kΩ 0.5953
RLOW = 22.1 kΩ 0.5303
RLOW = 19.1 kΩ 0.4699
RLOW = 16.5 kΩ 0.415
RLOW = 14.3 kΩ 0.3666
RLOW = 12.1 kΩ 0.3163
RLOW = 10 kΩ 0.2664
RLOW = 7.87 kΩ 0.2138
RLOW = 6.19 kΩ 0.1708
RLOW = 4.64 kΩ 0.1299
RLOW = 3.16 kΩ 0.0898
RLOW = 1.78 kΩ 0.0512
RLOW = 0 Ω GND
SOFT START
tSS Soft-start time VOUT rising from 0 V to 95% of final set point, RMODE_HIGH = 100 kΩ RMODE_LOW = 60.4 kΩ 7 8(3) 10 ms
RMODE_LOW = 53.6 kΩ 3.6 4(4) 5.2
RMODE_LOW = 47.5 kΩ 1.6 2 2.8
RMODE_LOW = 42.2 kΩ 0.8 1 1.6
POWER-ON DELAY
tPODLY Power-on delay time 1.024 ms
PGOOD COMPARATOR
VPGTH PGOOD threshold PGOOD in from higher 105 108 111 %VREF
PGOOD in from lower 89 92 95
PGOOD out to higher 120
PGOOD out to lower 68
IPG PGOOD sink current VPGOOD = 0.5 V 6.9 mA
IPGLK PGOOD leakage current VPGOOD = 5 V –1 0 1 μA
tPGDLY PGOOD delay time Delay for PGOOD going in 1.024 ms
Delay for PGOOD coming out 2 µs
CURRENT DETECTION
VILM VILIM voltage range On-resistance (RDS(on)) sensing 0.1 1.2 V
IOCL_VA Valley current limit threshold RLIM = 130 kΩ 40 A
OC tolerance ±10%(5)
RLIM = 97.6 kΩ 30 A
OC tolerance ±15%(5)
RLIM = 64.9 kΩ 20 A
OC tolerance ±20%
IOCL_VA_N Negative valley current limit threshold RLIM = 130 kΩ –40 A
RLIM = 97.6 kΩ –30
RLIM = 64.9 kΩ –20
ICLMP_LO Clamp current at VLIM clamp at lowest VILIM_CLMP = 0.1 V, TA = 25°C 6.25 A
ICLMP_HI Clamp current at VLIM clamp at highest VILIM_CLMP = 1.2 V, TA = 25°C 75 A
VZC Zero cross detection offset 0 mV
PROTECTIONS AND OOB
VBPUVLO BP UVLO threshold voltage Wake-up 3.32 V
Shutdown 3.11
VOVP OVP threshold voltage OVP detect voltage 117% 120% 123% VREF
tOVPDLY OVP response time 100-mV over drive 1 µs
VUVP UVP threshold voltage UVP detect voltage 65% 68% 71% VREF
tUVPDLY UVP delay filter delay time 1 ms
VOOB OOB threshold voltage 8% VREF
tHICDLY Hiccup blanking time tSS = 1 ms 16 ms
tSS = 2 ms 24 ms
tSS = 4 ms 38 ms
tSS = 8 ms 67 ms
BP VOLTAGE
VBP BP LDO output voltage VIN = 12 V, 0 A ≤ ILOAD ≤ 10 mA, 5.07 V
VBPDO BP LDO drop-out voltage VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C 365 mV
IBPMAX BP LDO over-current limit VIN = 12 V, TA = 25°C 100 mA
THERMAL SHUTDOWN
TSDN Built-In thermal shutdown threshold(1) Shutdown temperature 155 165 °C
Hysteresis 30
Specified by design. Not production tested.
Correlated with close loop EVM measurement at load current of 30 A.
In order to use the 8-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.
In order to use the 4-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.
Calculated from 20-A test data. Not production tested.

Typical Characteristics

TPS548D22 D011_SLUSC70.gif
VOUT = 1 V SKIP Mode fSW = 650 kHz
VDD = 5 V
Figure 1. Efficiency vs Output Current
TPS548D22 D013_slusc70.gif
VOUT = 5.5 V SKIP Mode fSW = 425 kHz
VDD = 5 V
Figure 3. Efficiency vs Output Current
TPS548D22 figure5_thermal_slusc70.png
VIN = 12 V fSW = 650 kHz IOUT = 40 A
VOUT = 1 V Natural convection
Figure 5. Thermal Image
TPS548D22 figure7_thermal_slusc70.png
VIN = 12 V fSW = 650 kHz IOUT = 40 A
VOUT = 1 V Airflow = 400 LFM
Figure 7. Thermal Image
TPS548D22 figure9_thermal_slusc70.png
VIN = 12 V fSW = 425 kHz IOUT = 30 A
VOUT = 5.5 V Airflow = 200 LFM
Figure 9. Thermal Image
TPS548D22 wave_7_p2p_2.png
VOUT = 1 V Default ramp VIN = 12 V
IOUT from 8 A to 32 A setting 2.5 A/µs
Figure 11. Transient Response Peak-to-Peak
TPS548D22 D012_SLUSC70.gif
VOUT = 1 V FCCM fSW = 650 kHz
VDD = 5 V
Figure 2. Efficiency vs Output Current
TPS548D22 D014_slusc70.gif
VOUT = 5.5 V FCCM fSW = 425 kHz
VDD = 5 V
Figure 4. Efficiency vs Output Current
TPS548D22 figure6_thermal_slusc70.png
VIN = 12 V fSW = 650 kHz IOUT = 40 A
VOUT = 1 V Airflow = 200 LFM
Figure 6. Thermal Image
TPS548D22 figure8_thermal_slusc70.png
VIN = 12 V fSW = 425 kHz IOUT = 30 A
VOUT = 5.5 V Natural convection
Figure 8. Thermal Image
TPS548D22 figure10_thermal_slusc70.png
VIN = 12 V fSW = 425 kHz IOUT = 30 A
VOUT = 5.5 V Airflow = 400 LFM
Figure 10. Thermal Image