JAJSMQ0D October   2022  – September 2023 TPS61033 , TPS610333

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Revision History
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Undervoltage Lockout
      2. 8.3.2  Enable and Soft Start
      3. 8.3.3  Setting the Output Voltage
      4. 8.3.4  Current Limit Operation
      5. 8.3.5  Pass-Through Operation
      6. 8.3.6  Power Good Indicator
      7. 8.3.7  Implement Output Discharge by PG function
      8. 8.3.8  Overvoltage Protection
      9. 8.3.9  Output Short-to-Ground Protection
      10. 8.3.10 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 PWM Mode
      2. 8.4.2 Power-Save Mode
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Setting the Output Voltage
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Output Capacitor Selection
        4. 9.2.2.4 Input Capacitor Selection
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
      3. 9.4.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 サード・パーティ製品に関する免責事項
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 Trademarks
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 用語集
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Current Limit Operation

The TPS61033 uses a valley current limit sensing scheme. Current limit detection occurs during the off-time by sensing of the voltage drop across the synchronous rectifier.

When the load current is increased such that the inductor current is above the current limit within the whole switching cycle time, the off-time is increased to allow the inductor current to decrease to this threshold before the next on-time begins (so called frequency foldback mechanism). When the current limit is reached, the output voltage decreases during further load increase.

The maximum continuous output current (IOUT(LC)), before entering current limit (CL) operation, can be defined by Equation 2.

Equation 2. GUID-09195C45-7835-48AC-BC3A-9809585B6457-low.gif

where

  • D is the duty cycle
  • ΔIL(P-P) is the inductor ripple current

The duty cycle can be estimated by Equation 3.

Equation 3. GUID-9C8CA3C6-ADA5-4F53-AE7C-99303DEBBF1F-low.gif

where

  • VOUT is the output voltage of the boost converter
  • VIN is the input voltage of the boost converter
  • η is the efficiency of the converter, use 90% for most applications

The peak-to-peak inductor ripple current is calculated by Equation 4.

Equation 4. GUID-3F40F356-EC10-4175-A145-52DAFBD5ECA4-low.gif

where

  • L is the inductance value of the inductor
  • fSW is the switching frequency
  • D is the duty cycle
  • VIN is the input voltage of the boost converter