JAJSEW8E February   2017  – August 2019 TPS61178

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーション
  4. 改訂履歴
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Under-voltage Lockout
      2. 8.3.2  Enable and Disable
      3. 8.3.3  Startup
      4. 8.3.4  Load Disconnect Gate Driver
      5. 8.3.5  Adjustable Peak Current Limit
      6. 8.3.6  Output Short Protection (with load disconnected FET)
      7. 8.3.7  Adjustable Switching Frequency
      8. 8.3.8  External Clock Synchronization (TPS611781)
      9. 8.3.9  Error Amplifier
      10. 8.3.10 Slope Compensation
      11. 8.3.11 Start-up with the Output Pre-Biased
      12. 8.3.12 Bootstrap Voltage (BST)
      13. 8.3.13 Over-voltage Protection
      14. 8.3.14 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation
      2. 8.4.2 Auto PFM Mode (TPS61178)
      3. 8.4.3 Forced PWM Mode (TPS611781)
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Custom Design With WEBENCH® Tools
        2. 9.2.2.2 Setting the Switching Frequency
      3. 9.2.3 Setting the Current Limit
      4. 9.2.4 Setting the Output Voltage
        1. 9.2.4.1 Selecting the Inductor
        2. 9.2.4.2 Selecting the Output Capacitors
        3. 9.2.4.3 Selecting the Input Capacitors
        4. 9.2.4.4 Loop Stability and Compensation
          1. 9.2.4.4.1 Small Signal Model
          2. 9.2.4.4.2 Loop Compensation Design Steps
          3. 9.2.4.4.3 Selecting the Disconnect FET
          4. 9.2.4.4.4 Selecting the Bootstrap Capacitor
          5. 9.2.4.4.5 VCC Capacitor
      5. 9.2.5 TPS61178 Application Waveform
    3. 9.3 System Examples
      1. 9.3.1 TPS61178 with 14-V Output from 2.7-V to 4.4-V Input Voltage
      2. 9.3.2 TPS61178 Without Load Disconnect Function
      3. 9.3.3 TPS611781 External Clock Synchronization
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 12.1.2 開発サポート
        1. 12.1.2.1 WEBENCH®ツールによるカスタム設計
    2. 12.2 ドキュメントのサポート
      1. 12.2.1 関連資料
    3. 12.3 関連リンク
    4. 12.4 ドキュメントの更新通知を受け取る方法
    5. 12.5 コミュニティ・リソース
    6. 12.6 商標
    7. 12.7 静電気放電に関する注意事項
    8. 12.8 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Small Signal Model

The TPS61178x uses the fixed frequency peak current mode control; there is an internal adaptive slope compensation to avoid the sub-harmonic oscillation. With the inductor current information sensed, the small-signal model of the power stage reduces from a two-pole system, created by L and COUT, to a single-pole system, created by ROUT and COUT. The single-pole system is easily used with the loop compensation. Figure 24 shows the equivalent small signal elements of a boost converter.

TPS61178 TPS61178X_ControlEquivalentCircuitr2.gifFigure 24. TPS61178x Control Equivalent Circuitry Model

The small signal of power stage including the slope compensation is:

Equation 15. TPS61178 tps61178-equation-18.gif

where

  • D is the duty cycle
  • ROUT is the output load resistor
  • RSENSE is the equivalent internal current sense resistor, which is typically 0.083 Ω of TPS61178x

The single pole of the power stage is:

Equation 16. TPS61178 tps61178-equation-19.gif

where

  • COUT is the output capacitance, for a boost converter having multiple, identical output capacitors in parallel, simply combine the capacitors with the equivalent capacitance

The zero created by the ESR of the output capacitor is:

Equation 17. TPS61178 tps61178-equation-20.gif

where

  • RESR is the equivalent resistance in series of the output capacitor.

The right-hand plane zero is:

Equation 18. TPS61178 tps61178-equation-21.gif

where

  • D is the duty cycle
  • ROUT is the output load resistor
  • L is the inductance

Using He(s) to model the inductor current sampling effect as well as the slope compensation effect on the small signal response, is shown in Equation 19

Equation 19. TPS61178 tps61178-equation-22.gif
Equation 20. TPS61178 tps61178-equation-23.gif

where

  • Sn is the slew rate of the inductor current ramping up

Equation 21. TPS61178 tps61178_equation_24.gif

where

  • Se is the slope compensation slew rate
  • Rdson_LS is the on resistance of Low-side FET

The slope compensation adaptively changes with the switching frequency and duty cycle.

He(s) models the inductor current sampling effect as well as the slope compensation effect on the small signal response. Note that if Sn > Se, e.g., when L is too small, the converter operates as a voltage mode converter and the above model no longer holds.

The TPS61178x COMP pin is the output of the internal trans-conductance amplifier.

Equation 22 shows the equation for feedback resistor network and the error amplifier.

Equation 22. TPS61178 tps61178-equation-25.gif

where

  • kCOMP and REA are the ratio of peak current / comp voltage, for TPS61178x, the typical value is kCOMP = 12 A / V and REA = 20 MΩ.
  • ƒP1, ƒP2 is the pole's frequency of the compensation, fZ is the zero’s frequency of the compensation network. network
Equation 23. TPS61178 tps61178-equation-26.gif

where

  • CC is the zero capacitor compensation
Equation 24. TPS61178 tps61178-equation-27.gif

where

  • CP is the pole capacitor compensation
  • RC is the resistor of the compensation network
Equation 25. TPS61178 tps61178-equation-39.gif