JAJSN70B October   2021  – June 2022 TPS631000

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Rating
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics 
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Undervoltage Lockout (UVLO)
      2. 7.3.2 Enable and Soft Start
      3. 7.3.3 Adjustable Output Voltage
      4. 7.3.4 Mode Selection (PFM/FPWM)
      5. 7.3.5 Reverse Current Operation
      6. 7.3.6 Protection Features
        1. 7.3.6.1 Input Overvoltage Protection
        2. 7.3.6.2 Output Overvoltage Protection
        3. 7.3.6.3 Short Circuit Protection
        4. 7.3.6.4 Thermal Shutdown
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design with WEBENCH Tools
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Output Capacitor Selection
        4. 8.2.2.4 Input Capacitor Selection
        5. 8.2.2.5 Setting the Output Voltage
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design with WEBENCH Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Inductor Selection

The inductor selection is affected by several parameters such as the following:

  • Inductor ripple current
  • Output voltage ripple
  • Transition point into power save mode
  • Efficiency

See Table 8-2 for typical inductors.

For high efficiencies, the inductor should have a low DC resistance to minimize conduction losses. Especially at high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors, the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value, the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for the inductor in steady state operation is calculated using Equation 3. Only the equation that defines the switch current in boost mode is shown because this provides the highest value of current and represents the critical current value for selecting the right inductor.

Equation 2. GUID-5B05A42D-CC9B-4F65-AEE7-BC63468A0E2A-low.gif
Equation 3. GUID-C850E945-E672-4F6B-AD22-6EC1E214355C-low.gif

where:

  • D = duty cycle in boost mode
  • f = converter switching frequency (typical 2.2 MHz)
  • L = inductor value
  • η = estimated converter efficiency (use the number from the efficiency curves or 0.9 as an assumption)

Note:

The calculation must be done for the minimum input voltage in boost mode.

Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current of the inductor needed. It is recommended to choose an inductor with a saturation current 20% higher than the value calculated using Equation 3. Possible inductors are listed in Table 8-2.

Table 8-2 List of Recommended Inductors
INDUCTOR VALUE [µH] SATURATION CURRENT [A] DCR [mΩ] PART NUMBER MANUFACTURER(1) SIZE
(L × W × H mm)
1 4.3 42 DFE252012P-1R0M=P2 MuRata 2.5 × 2.0 × 1.2
1 4.2 43 HTEK20161T-1R0MSR Cyntec 2.0 × 1.6 × 1.0
1 2.2 75 MAKK2016T1R0M (2) Taiyo Yuden 2.0 × 1.6 × 1.0
1 2.0 144 DFE18SAN1R0ME0 (2) Murata 1.6 × 0.8 × 0.8
This inductor does not support full output current range.