JAJSIR5C October   2019  – October 2023 TPS65313-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. デバイスの機能ブロック図
  6. Revision History
  7. 概要 (続き)
  8. Device Option Table
  9. Pin Configuration and Functions
  10. Specifications
    1. 9.1  Absolute Maximum Ratings
    2. 9.2  ESD Ratings
    3. 9.3  Recommended Operating Conditions
    4. 9.4  Thermal Information
    5. 9.5  Power-On-Reset, Current Consumption, and State Timeout Characteristics
    6. 9.6  PLL/Oscillator and SYNC_IN Pin Characteristics
    7. 9.7  Wide-VIN Synchronous Buck Regulator (Wide-VIN BUCK) Characteristics
    8. 9.8  Low-Voltage Synchronous Buck Regulator (LV BUCK) Characteristics
    9. 9.9  Synchronous Boost Converter (BOOST) Characteristics
    10. 9.10 Internal Voltage Regulator (VREG) Characteristics
    11. 9.11 Voltage Monitors for Regulators Characteristics
    12. 9.12 External General Purpose Voltage Monitor Characteristics
    13. 9.13 VIN and VIN_SAFE Under-Voltage and Over-Voltage Warning Characteristics
    14. 9.14 WAKE Input Characteristics
    15. 9.15 NRES (nRESET) Output Characteristics
    16. 9.16 ENDRV/nIRQ Output Characteristics
    17. 9.17 Analog DIAG_OUT
    18. 9.18 Digital INPUT/OUTPUT IOs (SPI Interface IOs, DIAG_OUT/SYNC_OUT, MCU_ERROR)
    19. 9.19 BUCK1, BUCK2, BOOST Thermal Shutdown / Over Temperature Protection Characteristics
    20. 9.20 PGNDx Loss Detection Characteristics
    21. 9.21 SPI Timing Requirements
    22. 9.22 SPI Characteristics
    23. 9.23 Typical Characteristics
  11. 10Parameter Measurement Information
  12. 11Detailed Description
    1. 11.1  Overview
    2. 11.2  Functional Block Diagram
    3. 11.3  Wide-VIN Buck Regulator (BUCK1)
      1. 11.3.1 Fixed-Frequency Voltage-Mode Step-Down Regulator
      2. 11.3.2 Operation
      3. 11.3.3 Voltage Monitoring (Monitoring and Protection)
      4. 11.3.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.3.5 Thermal Warning and Shutdown Protection (Monitoring and Protection)
      6. 11.3.6 Overvoltage Protection (OVP) (Monitoring and Protection)
      7. 11.3.7 Extreme Overvoltage Protection (EOVP) (Monitoring and Protection)
    4. 11.4  Low-Voltage Buck Regulator (BUCK2)
      1. 11.4.1 Fixed-Frequency Peak-Current Mode Step-Down Regulator
      2. 11.4.2 Operation
      3. 11.4.3 Output Voltage Monitoring (Monitoring and Protection)
      4. 11.4.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.4.5 Thermal Sensor Warning and Thermal Shutdown Protection (Monitoring and Protection)
      6. 11.4.6 Overvoltage Protection (OVP) (Monitoring and Protection)
    5. 11.5  Low-Voltage Boost Converter (BOOST)
      1. 11.5.1 Output Voltage Monitoring (Monitoring and Protection)
      2. 11.5.2 Overcurrent Protection (Monitoring and Protection)
      3. 11.5.3 Thermal Sensor Warning and Shutdown Protection (Monitoring and Protection)
      4. 11.5.4 Overvoltage Protection (OVP) (Monitoring and Protection)
    6. 11.6  VREG Regulator
    7. 11.7  BUCK1, BUCK2, and BOOST Switching Clocks and Synchronization (SYNC_IN) Clock
      1. 11.7.1 Internal fSW Clock Configuration (fSW Derived from an Internal Oscillator)
      2. 11.7.2 BUCK1 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      3. 11.7.3 BUCK2 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      4. 11.7.4 BOOST Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      5. 11.7.5 External fSW Clock Configuration (fSW Derived from SYNC_IN and PLL Clocks)
        1. 11.7.5.1 SYNC_IN, PLL, and VCO Clock Monitors
        2. 11.7.5.2 BUCK1 Switching Clock-Monitor Error (External fSW Clock Configuration)
        3. 11.7.5.3 BUCK2 Switching Clock-Monitor Error (External fSW Clock Configuration)
        4. 11.7.5.4 BOOST Switching Clock-Monitor Error (External fSW Clock Configuration)
    8. 11.8  BUCK1, BUCK2, and BOOST Switching-Clock Spread-Spectrum Modulation
    9. 11.9  Monitoring, Protection and Diagnostics Overview
      1. 11.9.1  Safety Functions and Diagnostic Overview
      2. 11.9.2  Supply Voltage Monitor (VMON)
      3. 11.9.3  Clock Monitors
      4. 11.9.4  Analog Built-In Self-Test
        1. 11.9.4.1 ABIST During Power-Up or Start-Up Event
        2. 11.9.4.2 ABIST in the RESET state
        3. 11.9.4.3 ABIST in the DIAGNOSTIC, ACTIVE, and SAFE State
        4. 11.9.4.4 ABIST Scheduler in the ACTIVE State
      5. 11.9.5  Logic Built-In Self-Test
      6. 11.9.6  Junction Temperature Monitors
      7. 11.9.7  Current Limit
      8. 11.9.8  Loss of Ground (GND)
      9. 11.9.9  Diagnostic Output Pin (DIAG_OUT)
        1. 11.9.9.1 Analog MUX Mode on DIAG_OUT
        2. 11.9.9.2 Digital MUX Mode on DIAG_OUT
          1. 11.9.9.2.1 MUX-Output Control Mode
          2. 11.9.9.2.2 Device Interconnect Mode
      10. 11.9.10 Watchdog
        1. 11.9.10.1 WD Question and Answer Configurations
        2. 11.9.10.2 WD Failure Counter and WD Status
        3. 11.9.10.3 WD SPI Event Definitions
        4. 11.9.10.4 WD Q&A Sequence Run
        5. 11.9.10.5 WD Question and Answer Value Generation
          1. 11.9.10.5.1 WD Initialization Events
      11. 11.9.11 MCU Error Signal Monitor
      12. 11.9.12 NRES Driver
      13. 11.9.13 ENDRV/nIRQ Driver
      14. 11.9.14 CRC Protection for the Device Configuration Registers
      15. 11.9.15 CRC Protection for the Device EEPROM Registers
    10. 11.10 General-Purpose External Supply Voltage Monitors
    11. 11.11 Analog Wake-up and Failure Latch
    12. 11.12 Power-Up and Power-Down Sequences
    13. 11.13 Device Fail-Safe State Controller (Monitoring and Protection)
      1. 11.13.1 OFF State
      2. 11.13.2 INIT State
      3. 11.13.3 RESET State (ON Transition From the INIT State)
      4. 11.13.4 RESET State (ON Transition From DIAGNOSTIC, ACTIVE, and SAFE State)
      5. 11.13.5 DIAGNOSTIC State
      6. 11.13.6 ACTIVE State
      7. 11.13.7 SAFE State
      8. 11.13.8 State Transition Priorities
    14. 11.14 Wakeup
    15. 11.15 Serial Peripheral Interface (SPI)
      1. 11.15.1 SPI Command Transfer Phase
      2. 11.15.2 SPI Data Transfer Phase
      3. 11.15.3 Device SPI Status Flag Response Byte
      4. 11.15.4 Device SPI Data Response
      5. 11.15.5 Device SPI Master CRC (MCRC) Input
      6. 11.15.6 Device SPI Slave CRC (SCRC) Output
      7. 11.15.7 SPI Frame Overview
    16. 11.16 Register Maps
      1. 11.16.1 Device SPI Mapped Registers
        1. 11.16.1.1 Memory Maps
          1. 11.16.1.1.1 SPI Registers
  13. 12Applications, Implementation, and Layout
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
      2. 12.2.2 Detailed Design Procedure
        1. 12.2.2.1  Selecting the BUCK1, BUCK2, and BOOST Output Voltages
        2. 12.2.2.2  Selecting the BUCK1, BUCK2, and BOOST Inductors
        3. 12.2.2.3  Selecting the BUCK1 and BUCK2 Output Capacitors
        4. 12.2.2.4  Selecting the BOOST Output Capacitors
        5. 12.2.2.5  Input Filter Capacitor Selection for BUCK1, BUCK2, and BOOST
        6. 12.2.2.6  Input Filter Capacitors on AVIN and VIN_SAFE Pins
        7. 12.2.2.7  Bootstrap Capacitor Selection
        8. 12.2.2.8  Internal Linear Regulator (VREG) Output Capacitor Selection
        9. 12.2.2.9  EXTSUP Pin
        10. 12.2.2.10 WAKE Input Pin
        11. 12.2.2.11 VIO Supply Pin
        12. 12.2.2.12 External General-Purpose Voltage Monitor Input Pins (EXT_VSENSE1 and EXT_VSENSE2)
        13. 12.2.2.13 SYNC_IN Pin
        14. 12.2.2.14 MCU_ERR Pin
        15. 12.2.2.15 NRES Pin
        16. 12.2.2.16 ENDRV/nIRQ Pin
        17. 12.2.2.17 DIAG_OUT Pin
        18. 12.2.2.18 SPI Pins (NCS,SCK, SDI, SDO)
        19. 12.2.2.19 PBKGx, AGND, DGND, and PGNDx Pins
        20. 12.2.2.20 Calculations for Power Dissipation and Junction Temperature
          1. 12.2.2.20.1 BUCK1 Output Current Calculation
          2. 12.2.2.20.2 Device Power Dissipation Estimation
          3. 12.2.2.20.3 Device Junction Temperature Estimation
            1. 12.2.2.20.3.1 Example for Device Junction Temperature Estimation
      3. 12.2.3 Application Curves
      4. 12.2.4 Layout
        1. 12.2.4.1 Layout Guidelines
        2. 12.2.4.2 Layout Example
        3. 12.2.4.3 Considerations for Board-Level Reliability (BLR)
    3. 12.3 Power Supply Coupling and Bulk Capacitors
  14. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 ドキュメントの更新通知を受け取る方法
    3. 13.3 サポート・リソース
    4. 13.4 Trademarks
    5. 13.5 静電気放電に関する注意事項
    6. 13.6 用語集
  15. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

BOOST Switching Clock-Monitor Error (Internal fSW Clock Configuration)

In the operating states (RESET, DIAGNOSTIC, ACTIVE, and SAFE), if the BOOST switching-clock error is detected while the internal OSC clock source is in good condition, the following occurs:

  • The BOOST_FSW_CLK_ERR status bit is set.
  • The BOOST converter is disabled without activating resistive discharge.
  • The device goes into the SAFE state.
  • The device error counter increments.
  • The ENDRV/nIRQ pin is asserted low to interrupt the external system MCU.

If the BOOST converter is configured as a RESET state condition (BOOST_UV_RST_EN = 1b), and when the BOOST output discharges to less than its UV-threshold level, then the device goes into the RESET state. In the RESET state, the BOOST converter is enabled again only after the BOOST converter discharges below the VBOOST_RESTART_LEVEL voltage level and after the SYNC_IN, PLL/VCO and fSW_BOOST clock monitors indicate that the clocks are in good condition. Enabling the BOOST converter again is followed by a full ABIST run during an NRES extension, after there is no active RESET state condition.

If an ABIST run in the RESET state fails (because of a clock-monitor failure or any other failure) the device goes into the SAFE state again, repeating the same procedure until the device error counter reaches its programmed power-down threshold level and the device goes into the OFF state.

While the device is in the SAFE state, the system MCU can detect if a reported clock failure occurred because of a clock-monitor failure or true clock failure. A false clock failure occurs when a clock monitor fails. In case of a false clock-failure detection, the system MCU can disable clock monitoring.

While the device is in the RESET state and when the BOOST converter is enabled again, the device goes into the OFF state, if the BOOST converter does not ramp-up within the time-out interval for the RESET state.

If the BOOST is not configured as a RESET state condition (BOOST_UV_RST_EN = 0b), the device stays in the SAFE state as the BOOST output discharges to less than its UV-threshold level. The system MCU can enable the BOOST converter by setting the BOOST_EN control bit in the PWR_CTRL control register.

While the device is in the SAFE state, the system MCU can command a clock-monitor diagnostic test to be performed. If this diagnostic test fails, the system MCU can disable the clock monitoring function. As a single-point failure, a clock monitoring circuit failure is not a critical failure, and therefore, the system MCU can ignore it.