JAJSEF6L August   2013  – February 2019 TPS659038-Q1 , TPS659039-Q1

PRODUCTION DATA.  

  1. デバイスの概要
    1. 1.1 特長
    2. 1.2 アプリケーション
    3. 1.3 概要
    4. 1.4 ブロック概略図
  2. 改訂履歴
  3. Device Comparison
  4. Pin Configuration and Functions
    1. 4.1 Pin Functions
      1.      Pin Functions
    2. 4.2 Device Ball Mapping – 13 × 13 nFBGA, 169 Balls, 0,8-mm Pitch
    3. 4.3 Signal Descriptions
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics: Latch Up Rating
    6. 5.6  Electrical Characteristics: LDO Regulator
    7. 5.7  Electrical Characteristics: Dual-Phase (SMPS12 and SMPS45) and Triple-Phase (SMPS123 and SMPS457) Regulators
    8. 5.8  Electrical Characteristics: Stand-Alone Regulators (SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9)
    9. 5.9  Electrical Characteristics: Reference Generator (Bandgap)
    10. 5.10 Electrical Characteristics: 16-MHz Crystal Oscillator, 32-kHz RC Oscillator, and Output Buffers
    11. 5.11 Electrical Characteristics: DC-DC Clock Sync
    12. 5.12 Electrical Characteristics: 12-Bit Sigma-Delta ADC
    13. 5.13 Electrical Characteristics: Thermal Monitoring and Shutdown
    14. 5.14 Electrical Characteristics: System Control Thresholds
    15. 5.15 Electrical Characteristics: Current Consumption
    16. 5.16 Electrical Characteristics: Digital Input Signal Parameters
    17. 5.17 Electrical Characteristics: Digital Output Signal Parameters
    18. 5.18 Electrical Characteristics: I/O Pullup and Pulldown Resistance
    19. 5.19 I2C Interface Timing Requirements
    20. 5.20 SPI Timing Requirements
    21. 5.21 Typical Characteristics
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagrams
    3. 6.3 Feature Description
      1. 6.3.1  Power Management
      2. 6.3.2  Power Resources (Step-Down and Step-Up SMPS Regulators, LDOs)
        1. 6.3.2.1 Step-Down Regulators
          1. 6.3.2.1.1 Sync Clock Functionality
          2. 6.3.2.1.2 Output Voltage and Mode Selection
          3. 6.3.2.1.3 Current Monitoring and Short Circuit Detection
          4. 6.3.2.1.4 POWERGOOD
          5. 6.3.2.1.5 DVS-Capable Regulators
          6. 6.3.2.1.6 Non DVS-Capable Regulators
          7. 6.3.2.1.7 Step-Down Converters SMPS12 and SMPS123
            1.         a. Dual-Phase SMPS and Stand-Alone SMPS
            2.         b. Triple Phase SMPS
          8. 6.3.2.1.8 Step-Down Converter SMPS45 and SMPS457
          9. 6.3.2.1.9 Step-Down Converters SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9
        2. 6.3.2.2 LDOs – Low Dropout Regulators
          1. 6.3.2.2.1 LDOVANA
          2. 6.3.2.2.2 LDOVRTC
          3. 6.3.2.2.3 LDO Bypass (LDO9)
          4. 6.3.2.2.4 LDOUSB
          5. 6.3.2.2.5 Other LDOs
      3. 6.3.3  Long-Press Key Detection
      4. 6.3.4  RTC
        1. 6.3.4.1 General Description
        2. 6.3.4.2 Time Calendar Registers
          1. 6.3.4.2.1 TC Registers Read Access
          2. 6.3.4.2.2 TC Registers Write Access
        3. 6.3.4.3 RTC Alarm
        4. 6.3.4.4 RTC Interrupts
        5. 6.3.4.5 RTC 32-kHz Oscillator Drift Compensation
      5. 6.3.5  GPADC – 12-Bit Sigma-Delta ADC
        1. 6.3.5.1 Asynchronous Conversion Request (SW)
        2. 6.3.5.2 Periodic Conversion Request (AUTO)
        3. 6.3.5.3 Calibration
      6. 6.3.6  General-Purpose I/Os (GPIO Terminals)
        1. 6.3.6.1 REGEN Output
      7. 6.3.7  Thermal Monitoring
        1. 6.3.7.1 Hot-Die Function (HD)
        2. 6.3.7.2 Thermal Shutdown (TS)
        3. 6.3.7.3 Temperature Monitoring With External NTC Resistor or Diode
      8. 6.3.8  Interrupts
      9. 6.3.9  Control Interfaces
        1. 6.3.9.1 I2C Interfaces
          1. 6.3.9.1.1 I2C Implementation
          2. 6.3.9.1.2 F/S Mode Protocol
          3. 6.3.9.1.3 HS Mode Protocol
        2. 6.3.9.2 SPI Interface
          1. 6.3.9.2.1 SPI Modes
          2. 6.3.9.2.2 SPI Protocol
      10. 6.3.10 Device Identification
    4. 6.4 Device Functional Modes
      1. 6.4.1  Embedded Power Controller
      2. 6.4.2  State Transition Requests
        1. 6.4.2.1 ON Requests
        2. 6.4.2.2 OFF Requests
        3. 6.4.2.3 SLEEP and WAKE Requests
      3. 6.4.3  Power Sequences
      4. 6.4.4  Start Up Timing and RESET_OUT Generation
      5. 6.4.5  Power On Acknowledge
        1. 6.4.5.1 POWERHOLD Mode
        2. 6.4.5.2 AUTODEVON Mode
      6. 6.4.6  BOOT Configuration
        1. 6.4.6.1 Boot Terminal Selection
      7. 6.4.7  Reset Levels
      8. 6.4.8  Warm Reset
      9. 6.4.9  RESET_IN
      10. 6.4.10 Watchdog Timer (WDT)
      11. 6.4.11 System Voltage Monitoring
        1. 6.4.11.1 Generating a POR
  7. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1  Recommended External Components
        2. 7.2.2.2  SMPS Input Capacitors
        3. 7.2.2.3  SMPS Output Capacitors
        4. 7.2.2.4  SMPS Inductors
        5. 7.2.2.5  LDO Input Capacitors
        6. 7.2.2.6  LDO Output Capacitors
        7. 7.2.2.7  VCC1
          1. 7.2.2.7.1 Meeting the Power Down Sequence
          2. 7.2.2.7.2 Maintaining Sufficient Input Voltage
        8. 7.2.2.8  VIO_IN
        9. 7.2.2.9  16-MHz Crystal
        10. 7.2.2.10 GPADC
      3. 7.2.3 Application Curves
  8. Power Supply Recommendations
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10デバイスおよびドキュメントのサポート
    1. 10.1 デバイス・サポート
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 デバイスの項目表記
    2. 10.2 ドキュメントのサポート
      1. 10.2.1 関連資料
    3. 10.3 関連リンク
    4. 10.4 ドキュメントの更新通知を受け取る方法
    5. 10.5 Community Resources
    6. 10.6 商標
    7. 10.7 静電気放電に関する注意事項
    8. 10.8 Glossary
  11. 11メカニカル、パッケージ、および注文情報
    1. 11.1 パッケージ・マテリアル情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • ZWS|169
サーマルパッド・メカニカル・データ
発注情報

Maintaining Sufficient Input Voltage

In the event of high loading during loss of input voltage, there is a risk to go below the voltage level necessary for the internal logic of the device to work properly before the device is disabled. This means that when the VCC1 voltage supply level becomes lower than the VSYS_LO threshold, the input voltage may continue dropping to very low voltages during the 180 us ±10% delay before the device is disabled.

If a large input voltage drop occurs before the device is disabled, the internal logic can no longer properly drive the FETs of the SMPS, and it is possible that the high-side FET and low-side FET of the SMPS are on at the same time. In the event that the high-side and low-side FETs for an SMPS are on at the same time, there is a direct path from SMPSx_IN to SMPSx_GND, allowing cross-conduction and possible damage of the device.

In order to prevent damage or irregular switching behavior, it is important that the voltage at the SMPSx_IN pin stays above 1.8 V, including negative transients, before the device is disabled. The minimum voltage seen at the SMPSx_IN pin is dependent on VCC1 and the PCB inductance between the SMPSx_IN pin and the input capacitor. Use Equation 2 to determine the minimum capacitance needed on VCC1 to ensure that the device continues switching properly before it is disabled.

Equation 2. C = I × ΔT / (VSYS_LO – VCC1MIN)

where

  • C is total capacitance on VCC1, including pre-regulator output capacitance and PMIC input capacitance
  • I is the total current on the PMIC input supply
  • ΔT is the maximum debounce time after VCC1 = VSYS_LO before the device switches off (198us)
  • VSYS_LO is the threshold where the device is disabled
  • VCC1MIN is the minimum VCC1 voltage to keep the SMPSx_IN transients above 1.8 V

When measuring the SMPSx_IN and VCC1 during power down, use active differential probes and a high resolution oscilloscope (4GS/sec or more). VCC1 can be measured over the 10uF input capacitor. However, SMPSx_IN must be measured at the pin in order to measure the transients on this rail accurately. To measure SMPSx_IN, place the negative lead of the differential probe at a nearby GND, such as the GND of the SMPSx_IN input capacitor. Place the positive lead of the differential probe as close as possible to the SMPSx_IN pin. With this set up, verify that SMPSx_IN, including the ripple on this signal, does not drop below 1.8V before the SMPS stops switching. See Figure 7-5 for an example of how to take this measurement. For ways to decrease the amplitude of the transient spikes, see Table 9-1 for recommended parasitic inductance requirements.

TPS659038-Q1 TPS659039-Q1 tps6591x-q1-waveform-of-smpsx_in-transients.gifFigure 7-5 Waveform of SMPSx_IN Transients