JAJS408M June   2008  – June 2018 TPS735

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     代表的なアプリケーション
  4. 改訂履歴
    1.     Pin Configuration and Functions
      1.      Pin Functions
  5. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagrams
    3. 6.3 Feature Description
      1. 6.3.1 Internal Current Limit
      2. 6.3.2 Shutdown
      3. 6.3.3 Dropout Voltage
      4. 6.3.4 Start-Up and Noise Reduction Capacitor
      5. 6.3.5 Transient Response
      6. 6.3.6 Undervoltage Lockout
      7. 6.3.7 Minimum Load
      8. 6.3.8 Thermal Protection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Normal Operation
      2. 6.4.2 Dropout Operation
      3. 6.4.3 Disabled
  7. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Design Requirements
        1. 7.2.1.1 Input and Output Capacitor Requirements
        2. 7.2.1.2 Feed-Forward Capacitor Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Output Noise
      3. 7.2.3 Application Curves
  8. Power Supply Recommendations
  9. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance
    2. 9.2 Layout Example
    3. 9.3 Power Dissipation
    4. 9.4 Estimating Junction Temperature
    5. 9.5 Package Mounting
  10. 10デバイスおよびドキュメントのサポート
    1. 10.1 デバイス・サポート
      1. 10.1.1 開発サポート
        1. 10.1.1.1 評価モジュール
      2. 10.1.2 デバイスの項目表記
    2. 10.2 ドキュメントのサポート
      1. 10.2.1 関連資料
    3. 10.3 商標
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 Glossary
  11. 11メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Power Dissipation

The ability to remove heat from the die is different for each package type, which presents different considerations in the PCB layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air. Performance data for JEDEC low- and high-K boards are shown in the Thermal Information section. Heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers improves the heat sink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation can be approximated by the product of the output current and the voltage drop across the output pass element, as Equation 2 shows.

Equation 2. TPS735 Equation 2_SBVS087M.gif

NOTE

When the device is used in a condition of high input and low output voltages, PD can exceed the junction temperature rating even when the ambient temperature is at room temperature.

Equation 3 is an example calculation for the power dissipation (PD) of the DRB package.

Equation 3. TPS735 Equation 3_SBVS087M.gif

Power dissipation can be minimized and greater efficiency can be achieved by using the lowest possible input voltage necessary to achieve the required output performance.

On the DRB package, the primary conduction path for heat is through the exposed thermal pad to the PCB. The pad can be connected to ground or left floating. The pad must be attached to an appropriate amount of copper PCB area to ensure that the device does not overheat. The maximum allowable junction-to-ambient thermal resistance depends on the maximum ambient temperature, maximum device junction temperature, and power dissipation of the device. Equation 4 calculates the maximum junction-to-ambient thermal resistance.

Equation 4. TPS735 eq_04_slvscd4.gif

Figure 23 estimates the maximum RθJA and the minimum amount of PCB copper area required to heat sink.

TPS735 ai_theta_ja_bvs087.gif

NOTE:

θJA value at board size of 9 in2 (that is, 3 in × 3 in) is a JEDEC standard.
Figure 23. θJA vs Board Size

Figure 23 shows the variation of θJA as a function of ground plane copper area in the board. It is intended only as a guideline to demonstrate the effects of heat spreading in the ground plane and must not be used to estimate actual thermal performance in real application environments.

NOTE

When the device is mounted on an application PCB, it is strongly recommended to use ΨJT and ΨJB, as explained in the Estimating Junction Temperature section.