JAJSKS4A August   2021  – December 2021 TPS92519-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Buck Converter Switching Operation
      2. 7.3.2  Switching Frequency and Adaptive On-Time Control
      3. 7.3.3  Minimum On-Time, Off-Time, and Inductor Ripple
      4. 7.3.4  Enable
      5. 7.3.5  LED Current Regulation and Error Amplifier
      6. 7.3.6  Start-up Sequence
      7. 7.3.7  Analog Dimming and Forced Continuous Conduction Mode
      8. 7.3.8  External PWM Dimming and Input Undervoltage Lockout (UVLO)
      9. 7.3.9  Shunt FET Dimming or Matrix Beam Application
      10. 7.3.10 Bias Supply
      11. 7.3.11 Bootstrap Supply
      12. 7.3.12 Faults and Diagnostics
      13. 7.3.13 Output Short Circuit Fault
      14. 7.3.14 Output Open Circuit Fault
      15. 7.3.15 Parallel Operation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power On Reset (POR)
      2. 7.4.2 Run Mode
      3. 7.4.3 Sleep Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Duty Cycle Consideration
      2. 8.1.2  Switching Frequency Selection
      3. 8.1.3  LED Current Set Point
      4. 8.1.4  Inductor Selection
      5. 8.1.5  Output Capacitor Selection
      6. 8.1.6  Input Capacitor Selection
      7. 8.1.7  Bootstrap Capacitor Selection
      8. 8.1.8  Compensation Capacitor Selection
      9. 8.1.9  Input Undervoltage Protection
      10. 8.1.10 CSN Protection Diode
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Calculating Duty Cycle
        2. 8.2.2.2 Calculating Minimum On-Time and Off-Time
        3. 8.2.2.3 Minimum Switching Frequency
        4. 8.2.2.4 LED Current Set Point
        5. 8.2.2.5 Inductor Selection
        6. 8.2.2.6 Output Capacitor Selection
        7. 8.2.2.7 Bootstrap Capacitor Selection
        8. 8.2.2.8 Compensation Capacitor Selection
        9. 8.2.2.9 PWM Dimming and Input Voltage Protection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Compact Layout for EMI Reduction
        1. 10.1.1.1 Ground Plane
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Compact Layout for EMI Reduction

Radiated EMI is generated by the high di/dt from pulsing currents in switching converters. The larger the area covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to minimize radiated EMI is to identify the pulsing current path and minimize the area of the path. In buck converters, the pulsing current path is from the VIN side of the input capacitors through the HS switch, through the LS switch, and then returns to the ground of the input capacitor.

High-frequency ceramic bypass capacitors at the input side provide primary path for the high di/dt components of the pulsing current. Placing ceramic capacitors as close as possible to the VIN and PGND pins is the key to EMI reduction.

The PCB copper connection of the SW pin to the inductor must be as short as possible and just wide enough to carry the LED current without excessive heating. Short, thick traces or, copper pours (shapes), must be used for high current conduction path to minimize parasitic resistance. Place the output capacitor close to the CSN pin and grounded closely to the PGND pin.