SLVSDD9 March   2017 TPS92692 , TPS92692-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Internal Regulator and Undervoltage Lockout (UVLO)
      2. 7.3.2  Oscillator
      3. 7.3.3  Spread Spectrum Frequency Modulation
      4. 7.3.4  Gate Driver
      5. 7.3.5  Rail-to-Rail Current Sense Amplifier
      6. 7.3.6  Transconductance Error Amplifier
      7. 7.3.7  Switch Current Sense
      8. 7.3.8  Slope Compensation
      9. 7.3.9  Analog Adjust Input
      10. 7.3.10 DIM/PWM Input
      11. 7.3.11 Series P-Channel FET Dimming Gate Driver Output
      12. 7.3.12 Soft-Start
      13. 7.3.13 Current Monitor Output
      14. 7.3.14 Output Overvoltage Protection
      15. 7.3.15 Output Short-circuit Protection
      16. 7.3.16 Thermal Protection
      17. 7.3.17 Fault Indicator (FLT)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Hiccup Mode Short-circuit Protection
      2. 7.4.2 Fault Indication Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Duty Cycle Considerations
      2. 8.1.2  Inductor Selection
      3. 8.1.3  Output Capacitor Selection
      4. 8.1.4  Input Capacitor Selection
      5. 8.1.5  Main Power MOSFET Selection
      6. 8.1.6  Rectifier Diode Selection
      7. 8.1.7  LED Current Programming
      8. 8.1.8  Switch Current Sense Resistor
      9. 8.1.9  Slope Compensation
      10. 8.1.10 Feedback Compensation
      11. 8.1.11 Soft-Start
      12. 8.1.12 Overvoltage and Undervoltage Protection
      13. 8.1.13 Analog to PWM Dimming Considerations
      14. 8.1.14 Direct PWM Dimming Considerations
      15. 8.1.15 Series P-Channel MOSFET Selection
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Boost LED Driver
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Calculating Duty Cycle
          2. 8.2.1.2.2  Setting Switching Frequency
          3. 8.2.1.2.3  Setting Dither Modulation Frequency
          4. 8.2.1.2.4  Inductor Selection
          5. 8.2.1.2.5  Output Capacitor Selection
          6. 8.2.1.2.6  Input Capacitor Selection
          7. 8.2.1.2.7  Main N-Channel MOSFET Selection
          8. 8.2.1.2.8  Rectifying Diode Selection
          9. 8.2.1.2.9  Programming LED Current
          10. 8.2.1.2.10 Setting Switch Current Limit
          11. 8.2.1.2.11 Programming Slope Compensation
          12. 8.2.1.2.12 Deriving Compensator Parameters
          13. 8.2.1.2.13 Setting Start-up Duration
          14. 8.2.1.2.14 Setting Overvoltage Protection Threshold
          15. 8.2.1.2.15 Analog-to-PWM Dimming Considerations
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical Buck-Boost LED Driver
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1  Calculating Duty Cycle
          2. 8.2.2.2.2  Setting Switching Frequency
          3. 8.2.2.2.3  Setting Dither Modulation Frequency
          4. 8.2.2.2.4  Inductor Selection
          5. 8.2.2.2.5  Output Capacitor Selection
          6. 8.2.2.2.6  Input Capacitor Selection
          7. 8.2.2.2.7  Main N-Channel MOSFET Selection
          8. 8.2.2.2.8  Rectifier Diode Selection
          9. 8.2.2.2.9  Programming LED Current
          10. 8.2.2.2.10 Setting Switch Current Limit and Slope Compensation
          11. 8.2.2.2.11 Programming Slope Compensation
          12. 8.2.2.2.12 Deriving Compensator Parameters
          13. 8.2.2.2.13 Setting Startup Duration
          14. 8.2.2.2.14 Setting Overvoltage Protection Threshold
          15. 8.2.2.2.15 Direct PWM Dimming Consideration
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Input voltage VIN, CSP, CSN –0.3 65 V
DIM/PWM –0.3 14 V
IS, RT, FLT –0.3 8.8 V
OV, SS, RAMP, DM, SLOPE, VREF, IADJ –0.3 5.5 V
CSP to CSN(3) –0.3 0.3 V
Output voltage(4) VCC, GATE –0.3 8.8 V
PDRV VCSP – 8.8 VCSP V
COMP –0.3 5.0 V
Source current IMON 100 µA
GATE (pulsed < 20 ns) 500 mA
PDRV (pulsed < 10 µs) 50 mA
Sink current GATE (pulsed < 20 ns) 500 mA
PDRV (pulsed < 10 µs) 50 mA
Operating junction temperature, TJ –40 150 °C
Storage temperature, Tstg 165 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to GND unless otherwise noted
Continuous sustaining voltage
All output pins are not specified to have an external voltage applied.

ESD Ratings

VALUE UNIT
TPS92692-Q1 IN PWP (HTSSOP) PACKAGE
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002, all pins(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins except 1, 10, 11, and 20 ±500
Pins 1, 10, 11, and 20 ±750
TPS92692 IN PWP (HTSSOP) PACKAGE
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(3) ±500
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Supply input voltage 6.5 14 65 V
VIN, crank Supply input, battery crank voltage 4.5 V
VCSP, VCSN Current sense common mode 6.5 60 V
ƒSW Switching frequency 80 800 kHz
ƒm Spread spectrum modulation frequency 0.1 12 kHz
fRAMP Internal PWM ramp generator frequency 100 2000 Hz
VIADJ Current reference voltage 0.14 VIADJ(CLAMP) V
TA Operating ambient temperature –40 125 °C

Thermal Information

THERMAL METRIC(1) TPS92692 TPS92692-Q1 UNIT
PWP (HTSSOP) PWP (HTSSOP)
20 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 40.8 40.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 26.1 26.1 °C/W
RθJB Junction-to-board thermal resistance 22.2 22.2 °C/W
ψJT Junction-to-top characterization parameter 0.8 0.8 °C/W
ψJB Junction-to-board characterization parameter 22.0 22.0 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.3 2.3 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

–40°C ≤ TJ ≤ 150°C, VIN = 14 V, VIADJ = 2.1 V, VRAMP = 500 mV, VDIM/PWM = 3 V, VOV = 500 mV, CVCC = 1 µF, CVREF = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, no load on GATE and PDRV (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT VOLTAGE (VIN)
IIN(STBY) Input stand-by current VPWM = 0 V 1.8 2.5 mA
IIN(SW) Input switching current VCC = 7.5 V, CGATE = 1 nF 5.1 6.6 mA
BIAS SUPPLY (VCC)
VCC(REG) Regulation voltage No load 7.0 7.5 8.0 V
VCC(UVLO) Supply undervoltage protection VCC rising threshold, VIN = 8 V 4.5 4.9 V
VCC falling threshold, VIN = 8 V 3.7 4.1 V
Hysteresis 400 mV
ICC(LIMIT) Supply current limit VCC = 0 V 30 36 46 mA
VDO LDO dropout voltage ICC = 20 mA, VIN = 5 V 300 mV
REFERENCE VOLTAGE (VREF)
VREF Reference voltage No load 4.77 4.96 5.15 V
IREF(LIMIT) Current limit VREF = 0 V 30 36 46 mA
OSCILLATOR (RT)
ƒSW Switching frequency RT = 40 kΩ 175 200 225 kHz
RT = 20 kΩ 341 390 439 kHz
VRT RT output voltage 1 V
VSYNC SYNC rising threshold VRT rising 2.5 3.1 V
SYNC falling threshold VRT falling 1.8 2 V
tSYNC(MIN) Minimum SYNC clock pulse width 100 ns
SPREAD SPECTRUM FREQUENCY MODULATION (DM)
IDM Triangle wave generator sink current 10 µA
Triangle wave generator source current 10 µA
VDM(TR) Triangle wave voltage peak (High) 1.15 V
Triangle wave voltage valley (Low) 850 mV
VDM(EN) Spread spectrum modulation enable threshold 700 mV
VDM(CLAMP) Internal clamp voltage VPWM = 0 V, RRAMP = 200 kΩ 1.25 V
GATE DRIVER (GATE)
RGH Gate driver high side resistance IGATE = –10 mA 5.4 11.2 Ω
RGL Gate driver low side resistance IGATE = 10 mA 4.3 10.5 Ω
CURRENT SENSE (IS)
VIS(LIMIT) Current limit threshold VDIM/PWM = 5 V, RRAMP = 249 kΩ 230.6 250 270 mV
VDIM/PWM = 0 V, RRAMP = 249 kΩ 665 700 735 mV
tIS(BLANK) Leading edge blanking time 88 118 158 ns
tIS(FAULT) Current limit fault time 35 µs
tILMT(DLY) IS to GATE propagation delay VIS pulsed from 0 V to 1 V 78 ns
PWM COMPARATOR AND SLOPE COMPENSATION (SLOPE)
DMAX Maximum duty cycle 90 %
VSLOPE Adaptive slope compensation VCSP = 24 V 410 mV
VSLOPE(MIN) Minimum slope compensation output voltage VCSP = 0 V 72 mV
VLV IS to COMP level shift voltage No slope compensation added 1.42 1.60 1.82 V
ILV IS level shift bias current No slope compensation added 17 µA
CURRENT SENSE AMPLIFIER (CSP, CSN)
V(CSP-CSN) Current sense thresholds VCSP = 14 V, VIADJ = 3 V 163.4 170.7 177.6 mV
VCSP = 14 V, VIADJ = 1.4 V 95.83 100.5 103.85 mV
CS(BW) Current sense unity gain bandwidth 500 kHz
GCS Current sense amplifier gain G = VIADJ/V(CSP-CSN) 14
K(OCP) Ratio of over-current detection threshold to analog adjust voltage K (OCP) = V(OCP-THR)/VIADJ 1.46 1.5 1.61
ICSP(BIAS) CSP bias current VCSN = 14.1 V, VCSP = 14 V 107 µA
ICSN(BIAS) CSN bias current VCSN = 14.1 V, VCSP = 14 V 110 µA
FAULT INDICATOR (FLT)
R(FLT) Open-drain pull down resistance 241 Ω
t(FAULT_TMR) Fault timer 24 36 48 ms
CURRENT MONITOR (IMON)
IIMON(SRC) IMON source current V(CSP-CSN) = 150 mV,
VIMON = 0 V
144 µA
VIMON(CLP) IMON output voltage clamp 3.2 3.7 4.2 V
VIMON(OS) IMON buffer offset voltage –7.2 0 8.5 mV
ANALOG ADJUST (IADJ)
VIADJ(CLP) IADJ internal clamp voltage IIADJ = 1 µA 2.29 2.40 2.55 V
IIADJ(BIAS) IADJ input bias current VIADJ < 2.2 V 10.5 nA
RIADJ(LMT) IADJ current limiting series resistor VIADJ > 2.6 V 12
ERROR AMPLIFIER (COMP)
gM Transconductance 121 µA/V
ICOMP(SRC) COMP current source capacity VIADJ = 1.4 V, V(CSP-CSN) = 0 V 130 µA
ICOMP(SINK) COMP current sink capacity VIADJ = 0 V, V(CSP-CSN) = 0.1 V 130 µA
EA(BW) Error amplifier bandwidth Gain = –3 dB 5 MHz
VCOMP(RST) COMP pin reset voltage 100 mV
RCOMP(DCH) COMP discharge FET resistance 246 Ω
SOFT-START (SS)
ISS Soft-start source current 7 10 12.8 µA
VSS(UVP_EN) Soft-start voltage threshold to enable output under-voltage protection 2.4 V
VSS(RST) Soft-start pin reset voltage 50 mV
RSS(DCH) SS discharge FET resistance 240 Ω
OUTPUT VOLTAGE INPUT (OV)
VOVP(THR) Overvoltage protection threshold 1.195 1.228 1.262 V
VUVP(THR) Undervoltage protection threshold 81.7 100 115.1 mV
t(UVP-BLANK) Undervoltage protection blanking period 4 µs
IOVP(HYS) OVP hysteresis current 12 20 27.5 µA
INTERNAL PWM RAMP GENERATOR (RAMP)
IRAMP Ramp generator source current 7.75 10 12.73 µA
Ramp generator sink current 8.24 10 12.41 µA
VRAMP Ramp signal peak (high) 3 V
Ramp signal valley (low) 1 V
PWM INPUT (DIM/PWM)
VPWM(HIGH) Schmitt trigger logic level (high threshold) VRAMP = 2.0 V 2.0 2.2 V
VPWM(LOW) Schmitt trigger logic level (low threshold) VRAMP = 2.0 V 1.8 2.0 V
RPWM(PD) PWM pull-down resistance 10
tDLY(RISE) PWM rising to PDRV delay CPDRV = 1 nF 294 ns
tDLY(FALL) PWM falling to PDRV delay CPDRV = 1 nF 326 ns
SERIES P-CHANNEL PWM FET GATE DRIVE OUTPUT (PDRV)
VPDRV(OFF) P-channel gate driver off-state voltage VCSP = 14 V 14 V
VPDRV(ON) P-channel gate driver on-state voltage VCSP = 14 V 7.4 V
IPDRV(SRC) PDRV sink current Pulsed 50 mA
RPDRV(L) PDRV driver pull up resistance 82 Ω
THERMAL SHUTDOWN
TSD Thermal shutdown temperature 175 °C
TSD(HYS) Thermal shutdown hysteresis 25 °C
All voltages are with respect to GND unless otherwise noted

Typical Characteristics

TA = 25°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load on GATE and PDRV (unless otherwise noted)
TPS92692 TPS92692-Q1 D001_SLVSDD9.gif Figure 1. VCC Regulation Voltage vs Junction Temperature
TPS92692 TPS92692-Q1 D002_SLVSDD9.gif
VIN = 5 V, IVCC= 20 mA
Figure 3. VCC Dropout Voltage vs Junction Temperature
TPS92692 TPS92692-Q1 D004_SLVSDD9.gif Figure 5. VCC UVLO Threshold vs Junction Temperature
TPS92692 TPS92692-Q1 D006_SLVSDD9.gif
RT= 20 kΩ
Figure 7. Switching Frequency vs Junction Temperature
TPS92692 TPS92692-Q1 D008_SLVSDD9.gif Figure 9. Current Limit Threshold vs Junction Temperature
TPS92692 TPS92692-Q1 D010_SLVSDD9.gif
VIADJ> 2.6 V
Figure 11. V(CSP-CSN) Threshold vs VCSP Voltage
TPS92692 TPS92692-Q1 D012_SLVSDD9.gif
VIADJ= 1.4 V
Figure 13. V(CSP-CSN) Threshold vs Junction Temperature
TPS92692 TPS92692-Q1 D014_SLVSDD9.gif Figure 15. VIMON vs V(CSP-CSN)
TPS92692 TPS92692-Q1 D016_SLVSDD9.gif Figure 17. V(CSP-CSN) Threshold vs VIADJ
TPS92692 TPS92692-Q1 D018_SLVSDD9.gif Figure 19. OVP Detection Threshold vs Junction Temperature
TPS92692 TPS92692-Q1 D020_SLVSDD9.gif Figure 2. VREF Reference Voltage vs Junction Temperature
TPS92692 TPS92692-Q1 D003_SLVSDD9.gif Figure 4. VCC Current Limit vs Junction Temperature
TPS92692 TPS92692-Q1 D005_SLVSDD9.gif Figure 6. Timing Resistance (RT) vs Switching Frequency
TPS92692 TPS92692-Q1 D007_SLVSDD9.gif Figure 8. Maximum Duty Cycle vs Junction Temperature
TPS92692 TPS92692-Q1 D009_SLVSDD9.gif Figure 10. Leading Edge Blanking Period vs Junction Temperature
TPS92692 TPS92692-Q1 D011_SLVSDD9.gif
VIADJ> 2.6 V
Figure 12. V(CSP-CSN) Threshold vs Junction Temperature
TPS92692 TPS92692-Q1 D013_SLVSDD9.gif
VCSP= VCSN = 14 V
Figure 14. CSP/CSN Input Bias Current vs Junction Temperature
TPS92692 TPS92692-Q1 D015_SLVSDD9.gif Figure 16. VIMON(CLP) vs Junction Temperature
TPS92692 TPS92692-Q1 D017_SLVSDD9.gif Figure 18. VIADJ Voltage Clamp vs Junction Temperature
TPS92692 TPS92692-Q1 D019_SLVSDD9.gif Figure 20. OVP Hysteresis Current vs Junction Temperature