JAJSNY9B September   2022  – February 2023 TPSM365R3 , TPSM365R6

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics
    6. 8.6  System Characteristics
    7. 8.7  Typical Characteristics
    8. 8.8  Typical Characteristics: VIN = 12 V
    9. 8.9  Typical Characteristics: VIN = 24 V
    10. 8.10 Typical Characteristics: VIN = 48 V
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Input Voltage Range
      2. 9.3.2  Output Voltage Selection
      3. 9.3.3  Input Capacitors
      4. 9.3.4  Output Capacitors
      5. 9.3.5  Enable, Start-Up, and Shutdown
      6. 9.3.6  External CLK SYNC (with MODE/SYNC)
        1. 9.3.6.1 Pulse-Dependent MODE/SYNC Pin Control
      7. 9.3.7  Switching Frequency (RT)
      8. 9.3.8  Power-Good Output Operation
      9. 9.3.9  Internal LDO, VCC UVLO, and BIAS Input
      10. 9.3.10 Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      11. 9.3.11 Spread Spectrum
      12. 9.3.12 Soft Start and Recovery from Dropout
        1. 9.3.12.1 Recovery from Dropout
      13. 9.3.13 Overcurrent Protection (OCP)
      14. 9.3.14 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Shutdown Mode
      2. 9.4.2 Standby Mode
      3. 9.4.3 Active Mode
        1. 9.4.3.1 CCM Mode
        2. 9.4.3.2 AUTO Mode - Light Load Operation
          1. 9.4.3.2.1 Diode Emulation
          2. 9.4.3.2.2 Frequency Reduction
        3. 9.4.3.3 FPWM Mode - Light Load Operation
        4. 9.4.3.4 Minimum On-time (High Input Voltage) Operation
      4. 9.4.4 Dropout
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 600-mA and 300-mA Synchronous Buck Regulator for Industrial Applications
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 10.2.1.2.2  Output Voltage Setpoint
          3. 10.2.1.2.3  Switching Frequency Selection
          4. 10.2.1.2.4  Input Capacitor Selection
          5. 10.2.1.2.5  Output Capacitor Selection
          6. 10.2.1.2.6  VCC
          7. 10.2.1.2.7  CFF Selection
          8. 10.2.1.2.8  Power-Good Signal
          9. 10.2.1.2.9  Maximum Ambient Temperature
          10. 10.2.1.2.10 Other Connections
        3. 10.2.1.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
        1. 10.4.1.1 Ground and Thermal Considerations
      2. 10.4.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
      3. 11.1.3 Development Support
        1. 11.1.3.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 サポート・リソース
    5. 11.5 Trademarks
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 用語集
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Output Voltage Selection

Adjustable Output Voltage Variants

For adjustable output voltage variants, the TPSM365Rx has an adjustable output voltage range from 1.0 V to 13 V. Setting the output voltage requires two resistors, RFBT and RFBB (see Figure 9-2). Connect RFBT between VOUT at the regulation point and the FB pin. Connect RFBB between the FB pin and AGND. The variants with adjustable output voltage option in the TPSM365Rx family are designed with a 1-V internal reference voltage. The value for RFBT can be calculated using Equation 10.

Equation 1. R F B T k Ω = R F B B k Ω × ( V O U T [ V ] 1   V - 1 )

For adjustable output options, an addition feedforward capacitor, CFF, in parallel with the RFBT can be needed to optimize the transient response. See Section 10.2.1.2.7 for additional information. No additional resistor divider or feedforward capacitor, CFF, is needed in case of fixed-output variants.

GUID-20220818-SS0I-SS9B-K3LK-H0SL7THZBKWW-low.svg Figure 9-2 Setting Output Voltage for Adjustable Output Variant
Table 9-1 Standard RFBT Values, Recommended FSW and Minimum COUT
VOUT (V) RFBT (kΩ) (1) RECOMMENED FSW (kHz) COUT(MIN) (µF) (EFFECTIVE) VOUT (V) RFBT (kΩ) (1) RECOMMENED FSW (kHz) COUT(MIN) (µF) (EFFECTIVE)
1.0 Short 400 300 3.3 23.2 800 40
1.2 2 500 200 5.0 40.2 1000 25
1.5 4.99 500 160 7.5 64.9 1300 20
1.8 8.06 600 120 10 90.9 1500 15
2.0 10 600 100 12 110 2000 5
2.5 15 750 65 13 120 2200 5
3.0 20 750 50
RFBB = 10 kΩ

Select an RFBB value of 10 kΩ for most applications. A larger RFBT value consumes less DC current, which is mandatory if light-load efficiency is critical. However, TI does not recommend RFBT larger than 1 MΩ because the feedback path becomes more susceptible to noise. High feedback resistance generally requires more careful layout of the feedback path. Keep the feedback trace as short as possible while keeping the feedback trace away from the noisy area of the PCB. For more layout recommendations, see Section 10.4.

Fixed Output Voltage Variants

When using the TPSM365Rx as fixed-output options (no external resistors), simply connect the FB/BIAS to the output (VOUT). The 3.3-V or 5-V fixed output options are factory trimmed and are unique to a specific device. See Section 6 for more details about the fixed-output variants.