JAJSNW1B October   2023  – June 2024 TPSM843620

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics (Module)
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  VIN Pins and VIN UVLO
      2. 6.3.2  Enable and Adjustable UVLO
      3. 6.3.3  Adjusting the Output Voltage
      4. 6.3.4  Switching Frequency Selection
      5. 6.3.5  Switching Frequency Synchronization to an External Clock
        1. 6.3.5.1 Internal PWM Oscillator Frequency
        2. 6.3.5.2 Loss of Synchronization
        3. 6.3.5.3 Interfacing the SYNC/FSEL Pin
      6. 6.3.6  Ramp Amplitude Selection
      7. 6.3.7  Soft Start and Prebiased Output Start-Up
      8. 6.3.8  Mode Pin
      9. 6.3.9  Power Good (PGOOD)
      10. 6.3.10 Current Protection
        1. 6.3.10.1 Positive Inductor Current Protection
        2. 6.3.10.2 Negative Inductor Current Protection
      11. 6.3.11 Output Overvoltage and Undervoltage Protection
      12. 6.3.12 Overtemperature Protection
      13. 6.3.13 Output Voltage Discharge
    4. 6.4 Device Functional Modes
      1. 6.4.1 Forced Continuous-Conduction Mode
      2. 6.4.2 Discontinuous Conduction Mode During Soft Start
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 1.0V Output, 1MHz Application
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1  Switching Frequency
          2. 7.2.1.2.2  Output Inductor Selection
          3. 7.2.1.2.3  Output Capacitor
          4. 7.2.1.2.4  Input Capacitor
          5. 7.2.1.2.5  Adjustable Undervoltage Lockout
          6. 7.2.1.2.6  Output Voltage Resistors Selection
          7. 7.2.1.2.7  Bootstrap Capacitor Selection
          8. 7.2.1.2.8  BP5 Capacitor Selection
          9. 7.2.1.2.9  PGOOD Pullup Resistor
          10. 7.2.1.2.10 Current Limit Selection
          11. 7.2.1.2.11 Soft-Start Time Selection
          12. 7.2.1.2.12 Ramp Selection and Control Loop Stability
          13. 7.2.1.2.13 MODE Pin
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
        1. 7.4.2.1 Thermal Performance
  9. Device and Documentation Support
    1. 8.1 ドキュメントの更新通知を受け取る方法
    2. 8.2 サポート・リソース
    3. 8.3 Trademarks
    4. 8.4 静電気放電に関する注意事項
    5. 8.5 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Input Capacitor

Input decoupling ceramic capacitors type X5R, X7R, or similar from VIN to PGND that are placed as close as possible to the IC are required. A total of at least 10µF of capacitance is required and some applications can require a bulk capacitance. TI recommends at least 1µF of bypass capacitance as close as possible to the VIN pin to minimize the input voltage ripple. A 0.1µF to 1-µF capacitor must be placed as close as possible to VIN pin 10 on the same side of the board of the device to provide high frequency bypass to reduce the high frequency overshoot and undershoot on VIN and SW pins. The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the maximum RMS input current. The RMS input current can be calculated using Equation 12.

For this example design, a ceramic capacitor with at least a 16V voltage rating is required to support the maximum input voltage. Three 10µF, 0805, X7S, 25V and one 0.1μF, 0402, X7R 25-V capacitors in parallel have been selected to be placed the sides of the IC near the VIN and PGND pins. Based on the capacitor manufacturer website, the total ceramic input capacitance derates to 8µF at the nominal input voltage of 12V. A 100µF bulk capacitance is also used to bypass long leads when connected a lab bench top power supply.

The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be calculated using Equation 13. The maximum input ripple occurs when operating nearest to 50% duty cycle. Using the nominal design example values of Ioutmax = 6A, CIN = 8μF, and fSW = 1000kHz, the input voltage ripple with the 12V nominal input is 57mV and the RMS input ripple current with the 4V minimum input is 5.2A.

Equation 12. TPSM843620

Equation 13. TPSM843620