JAJSCB0E June   2016  – December 2021 UCC21520

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Ratings
    6. 7.6  Insulation Specifications
    7. 7.7  Safety-Related Certifications
    8. 7.8  Safety-Limiting Values
    9. 7.9  Electrical Characteristics
    10. 7.10 Switching Characteristics
    11. 7.11 Insulation Characteristics Curves
    12. 7.12 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Propagation Delay and Pulse Width Distortion
    2. 8.2 Rising and Falling Time
    3. 8.3 Input and Disable Response Time
    4. 8.4 Programable Dead Time
    5. 8.5 Power-up UVLO Delay to OUTPUT
    6. 8.6 CMTI Testing
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 VDD, VCCI, and Undervoltage Lock Out (UVLO)
      2. 9.3.2 Input and Output Logic Table
      3. 9.3.3 Input Stage
      4. 9.3.4 Output Stage
      5. 9.3.5 Diode Structure in the UCC21520 and the UCC21520A
    4. 9.4 Device Functional Modes
      1. 9.4.1 Disable Pin
      2. 9.4.2 Programmable Dead-Time (DT) Pin
        1. 9.4.2.1 Tying the DT Pin to VCC
        2. 9.4.2.2 DT Pin Connected to a Programming Resistor between DT and GND Pins
        3. 9.4.2.3 41
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Designing INA/INB Input Filter
        2. 10.2.2.2 Select External Bootstrap Diode and its Series Resistor
        3. 10.2.2.3 Gate Driver Output Resistor
        4. 10.2.2.4 Gate to Source Resistor Selection
        5. 10.2.2.5 Estimate Gate Driver Power Loss
        6. 10.2.2.6 Estimating Junction Temperature
        7. 10.2.2.7 Selecting VCCI, VDDA/B Capacitor
          1. 10.2.2.7.1 Selecting a VCCI Capacitor
          2. 10.2.2.7.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 10.2.2.7.3 Select a VDDB Capacitor
        8. 10.2.2.8 Dead Time Setting Guidelines
        9. 10.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Third-Party Products Disclaimer
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Certifications
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 サポート・リソース
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Application Curves

Figure 10-5 and Figure 10-6 shows the bench test waveforms for the design example shown in Figure 10-1 under these conditions: VCC = 5 V, VDD = 20 V, fSW = 100 kHz, VDC-Link = 0 V.

Channel 1 (Yellow): UCC21520 INA pin signal.

Channel 2 (Blue): UCC21520 INB pin signal.

Channel 3 (Pink): Gate-source signal on the high side power transistor.

Channel 4 (Green): Gate-source signal on the low side power transistor.

In Figure 10-5, INA and INB are sent complimentary 3.3-V, 50% duty-cycle signals. The gate drive signals on the power transistor have a 250-ns dead time, shown in the measurement section of Figure 10-5. The dead-time matching is less than 1 ns with the 250-ns dead-time setting.

Figure 10-6 shows a zoomed-in version of the waveform of Figure 10-5, with measurements for propagation delay and rising/falling time. Cursors are also used to measure dead time. Importantly, the output waveform is measured between the power transistors’ gate and source pins, and is not measured directly from the driver OUTA and OUTB pins. Due to the split on and off resistors (Ron,Roff) and different sink and source currents, different rising (16 ns) and falling time (9 ns) are observed in Figure 10-6.

GUID-61BDE919-4A37-42FC-BFC4-F4C32B10EC52-low.gifFigure 10-5 Bench Test Waveform for INA/B and OUTA/B
GUID-C85F8271-A190-4DCB-B898-AF4CC6A9BE68-low.gifFigure 10-6 Zoomed-In bench-test waveform