JAJSCK9B september   2016  – december 2021 UCC21521

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety-Limiting Values
    9. 6.9  Electrical Characteristics
    10. 6.10 Switching Characteristics
    11. 6.11 Insulation Characteristics Curves
    12. 6.12 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Propagation Delay and Pulse Width Distortion
    2. 7.2 Rising and Falling Time
    3. 7.3 Input and Enable Response Time
    4. 7.4 Programmable Dead Time
    5. 7.5 Powerup UVLO Delay to OUTPUT
    6. 7.6 CMTI Testing
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 VDD, VCCI, and Under Voltage Lock Out (UVLO)
      2. 8.3.2 Input and Output Logic Table
      3. 8.3.3 Input Stage
      4. 8.3.4 Output Stage
      5. 8.3.5 Diode Structure in UCC21521
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable Pin
      2. 8.4.2 Programmable Dead Time (DT) Pin
        1. 8.4.2.1 Tying the DT Pin to VCC
        2. 8.4.2.2 DT Pin Connected to a Programming Resistor between DT and GND Pins
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Designing INA/INB Input Filter
        2. 9.2.2.2 Select External Bootstrap Diode and its Series Resistor
        3. 9.2.2.3 Gate Driver Output Resistor
        4. 9.2.2.4 Gate to Source Resistor Selection
        5. 9.2.2.5 Estimate Gate Driver Power Loss
        6. 9.2.2.6 Estimating Junction Temperature
        7. 9.2.2.7 Selecting VCCI, VDDA/B Capacitor
          1. 9.2.2.7.1 Selecting a VCCI Capacitor
          2. 9.2.2.7.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 9.2.2.7.3 Select a VDDB Capacitor
        8. 9.2.2.8 Dead Time Setting Guidelines
        9. 9.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 サード・パーティ製品に関する免責事項
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Certifications
    4. 12.4 ドキュメントの更新通知を受け取る方法
    5. 12.5 サポート・リソース
    6. 12.6 Trademarks
    7. 12.7 静電気放電に関する注意事項
    8. 12.8 用語集
  14. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Pin Configuration and Functions

GUID-0ABDB97E-083D-425F-8926-91CAC4B24B1A-low.gifFigure 5-1 DW Package16-Pin SOICTop View
Table 5-1 Pin Functions
PIN I/O(1) DESCRIPTION
NAME NO.
EN 5 I Enable both driver outputs if asserted high or left open, disable the output if set low. This pin is pulled high internally if left open. It is recommended to tie this pin to VCCI if not used to achieve better noise immunity.
DT 6 I Programmable dead time function.

Tying DT to VCCI allows the outputs to overlap. Placing a 500-Ω to 500-kΩ resistor (RDT) between DT and GND adjusts dead time according to: DT (in ns) = 10 x RDT (in kΩ). It is recommended to parallel a ceramic capacitor, 2.2nF or above, close to the DT pin with RDT to achieve better noise immunity. It is not recommended to leave DT floating.

GND 4 P Primary-side ground reference. All signals in the primary side are referenced to this ground.
INA 1 I Input signal for A channel. INA input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.
INB 2 I Input signal for B channel. INB input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.
NC 7 No internal connection.
NC 12 No internal connection.
NC 13 No internal connection.
OUTA 15 O Output of driver A. Connect to the gate of the A channel FET or IGBT.
OUTB 10 O Output of driver B. Connect to the gate of the B channel FET or IGBT.
VCCI 3 P Primary-side supply voltage. Locally decoupled to GND using a low ESR/ESL capacitor located as close to the device as possible.
VCCI 8 P Primary-side supply voltage. This pin is internally shorted to pin 3.
VDDA 16 P Secondary-side power for driver A. Locally decoupled to VSSA using a low ESR/ESL capacitor located as close to the device as possible.
VDDB 11 P Secondary-side power for driver B. Locally decoupled to VSSB using low ESR/ESL capacitor located as close to the device as possible.
VSSA 14 P Ground for secondary-side driver A. Ground reference for secondary side A channel.
VSSB 9 P Ground for secondary-side driver B. Ground reference for secondary side B channel.
P =Power, G= Ground, I= Input, O= Output