JAJSDX1 September   2017 UCC256303

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     概略回路図
  4. 改訂履歴
  5. ピン構成および機能
    1.     ピン機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD定格
    3. 6.3 推奨動作条件
    4. 6.4 熱特性
    5. 6.5 電気的特性
    6. 6.6 スイッチング特性
    7. 6.7 代表的特性
  7. 詳細説明
    1. 7.1 概要
    2. 7.2 機能ブロック図
    3. 7.3 機能説明
      1. 7.3.1  ハイブリッドヒステリシス制御
      2. 7.3.2  RVCC 12V電源
      3. 7.3.3  帰還信号経路
      4. 7.3.4  オプトカプラ帰還信号入力およびバイアス
      5. 7.3.5  システム外部動作停止
      6. 7.3.6  ピック・ロワー・ブロックとソフトスタート・マルチプレクサ
      7. 7.3.7  ピック・ハイヤー・ブロックとバースト・モード・マルチプレクサ
      8. 7.3.8  VCRコンパレータ
      9. 7.3.9  共振容量電圧検知
      10. 7.3.10 共振電流検知
      11. 7.3.11 バルク電圧検知
      12. 7.3.12 出力電圧検知
      13. 7.3.13 高電圧ゲート・ドライバ
      14. 7.3.14 保護機能
        1. 7.3.14.1 ZCS領域回避
        2. 7.3.14.2 過電流保護(OCP)
        3. 7.3.14.3 過出力電圧保護(VOUTOVP)
        4. 7.3.14.4 過入力電圧保護(VINOVP)
        5. 7.3.14.5 低入力電圧保護(VINUVP)
        6. 7.3.14.6 ブートUVLO
        7. 7.3.14.7 RVCC UVLO
        8. 7.3.14.8 過熱保護(OTP)
    4. 7.4 デバイスの機能モード
      1. 7.4.1 バースト・モード制御
      2. 7.4.2 ソフトスタートとバースト・モード閾値
      3. 7.4.3 システム状態/異常検出ステートマシン
      4. 7.4.4 波形発生器ステートマシン
  8. アプリケーションと実装
    1. 8.1 アプリケーション情報
    2. 8.2 代表的なアプリケーション
      1. 8.2.1 設計要件
      2. 8.2.2 詳細な設計手順
        1. 8.2.2.1  LLC電力段要件
        2. 8.2.2.2  LLC利得範囲
        3. 8.2.2.3  LnとQeを選択する
        4. 8.2.2.4  等価負荷抵抗を求める
        5. 8.2.2.5  LLC共振回路の部品特性を求める
        6. 8.2.2.6  LLC 1次側電流
        7. 8.2.2.7  LLC 2次側電流
        8. 8.2.2.8  LLC変圧器
        9. 8.2.2.9  LLC共振インダクタ
        10. 8.2.2.10 LLC共振容量
        11. 8.2.2.11 LLC 1次側MOSFET
        12. 8.2.2.12 アダプティブデッドタイムの設計における考慮事項
        13. 8.2.2.13 LLC整流ダイオード
        14. 8.2.2.14 LLC出力容量
        15. 8.2.2.15 BLKピン分圧器
        16. 8.2.2.16 BWピン分圧器
        17. 8.2.2.17 ISNSピン微分器
        18. 8.2.2.18 VCRピン・分圧容量
        19. 8.2.2.19 バースト・モード設定
        20. 8.2.2.20 ソフトスタート容量
      3. 8.2.3 アプリケーション曲線
  9. 電源に関する推奨事項
    1. 9.1 VCC容量
    2. 9.2 ブート・キャパシタ
    3. 9.3 RVCC容量
  10. 10レイアウト
    1. 10.1 レイアウトの注意点
    2. 10.2 レイアウト例
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 開発サポート
        1. 11.1.1.1 WEBENCH®ツールによるカスタム設計
    2. 11.2 ドキュメントのサポート(該当する場合)
      1. 11.2.1 関連資料
    3. 11.3 ドキュメントの更新通知を受け取る方法
    4. 11.4 コミュニティ・リソース
    5. 11.5 商標
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DDB|14
サーマルパッド・メカニカル・データ
発注情報

アダプティブデッドタイムの設計における考慮事項

共振タンクを設計して、1次側MOSFETを選定したら、コンバータのZVS動作を再確認する必要があります。ゲート・ターンオフ・エッジで、スイッチ・ノードを放電するのに十分な電流が共振インダクタに残っていなければ、ZVSは実現しません。UCC256303は、スイッチ・ノードのスルーイングに基づくアダプティブデッドタイムを実装しています。スルー検出回路の検出範囲は1V/ns~50V/nsです。

ZVS動作を確認するには、一連の時間領域シミュレーションを実行し、ゲート・ターンオフ・エッジでの共振電流を捕捉します。プロットの例を以下に示します。

UCC256303 Adaptive Dead Time_sluscu6.gifFigure 43. アダプティブデッドタイム制御

上記の図は、5%負荷で最大スイッチング周波数が生じ、5%負荷でシステムがバーストを開始すると仮定したものです。

このプロットによれば、当該動作範囲で、タンクに残っている最小共振電流はImin=0.8Aです。スルーレートを計算するには、1次側スイッチ・ノードの寄生容量を知る必要があります。この値はMOSFETのデータシートから推計できます。このケースでは、Cswitchnode=400pFです。最小スルーレートは次の式で求められます。

Equation 40. UCC256303 qu40_sluscu6.gif

これは、1V/nsの最小検出可能スルーレートを上回っています。