JAJSDZ3 October   2017 UCC256304

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     概略回路図
  4. 改訂履歴
  5. ピン構成および機能
    1.     ピン機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD定格
    3. 6.3 推奨動作条件
    4. 6.4 熱特性
    5. 6.5 電気的特性
    6. 6.6 スイッチング特性
    7. 6.7 代表的特性
  7. 詳細説明
    1. 7.1 概要
    2. 7.2 機能ブロック図
    3. 7.3 機能説明
      1. 7.3.1  ハイブリッドヒステリシス制御
      2. 7.3.2  RVCC 12V電源
      3. 7.3.3  帰還信号経路
      4. 7.3.4  オプトカプラ帰還信号入力およびバイアス
      5. 7.3.5  システム外部停止機能
      6. 7.3.6  ピック・ロワー・ブロックとソフトスタート・マルチプレクサ
      7. 7.3.7  ピック・ハイヤー・ブロックとバースト・モード・マルチプレクサ
      8. 7.3.8  VCRコンパレータ
      9. 7.3.9  共振容量電圧検知
      10. 7.3.10 共振電流検知
      11. 7.3.11 バルク電圧検知
      12. 7.3.12 出力電圧検知
      13. 7.3.13 高電圧ゲート・ドライバ
      14. 7.3.14 保護機能
        1. 7.3.14.1 ZCS領域回避
        2. 7.3.14.2 過電流保護(OCP)
        3. 7.3.14.3 過出力電圧保護(VOUTOVP)
        4. 7.3.14.4 過入力電圧保護(VINOVP)
        5. 7.3.14.5 低入力電圧保護(VINUVP)
        6. 7.3.14.6 ブートUVLO
        7. 7.3.14.7 RVCC UVLO
        8. 7.3.14.8 過熱保護(OTP)
    4. 7.4 デバイスの機能モード
      1. 7.4.1 バースト・モード制御
      2. 7.4.2 高電圧起動
      3. 7.4.3 Xコンデンサ放電
      4. 7.4.4 ソフトスタートとバースト・モード閾値
      5. 7.4.5 システム状態/異常検出ステートマシン
      6. 7.4.6 波形発生器ステートマシン
  8. アプリケーションと実装
    1. 8.1 アプリケーション情報
    2. 8.2 代表的なアプリケーション
      1. 8.2.1 設計要件
      2. 8.2.2 詳細な設計手順
        1. 8.2.2.1  WEBENCH®ツールによるカスタム設計
        2. 8.2.2.2  LLC電力段要件
        3. 8.2.2.3  LLCゲイン範囲
        4. 8.2.2.4  LnとQeを選択する
        5. 8.2.2.5  等価負荷抵抗を求める
        6. 8.2.2.6  LLC共振回路に必要な部品特性を求める
        7. 8.2.2.7  LLC 1次側電流
        8. 8.2.2.8  LLC2次側電流
        9. 8.2.2.9  LLC変圧器
        10. 8.2.2.10 LLC共振インダクタ
        11. 8.2.2.11 LLC共振容量
        12. 8.2.2.12 LLC1次側MOSFET
        13. 8.2.2.13 アダプティブ・デッドタイムの設計における考慮事項
        14. 8.2.2.14 LLC整流ダイオード
        15. 8.2.2.15 LLC出力容量
        16. 8.2.2.16 HVピン直列抵抗
        17. 8.2.2.17 BLKピン分圧器
        18. 8.2.2.18 BWピン分圧器
        19. 8.2.2.19 ISNSピン微分器
        20. 8.2.2.20 VCRピン・分圧容量
        21. 8.2.2.21 バースト・モード・プログラミング
        22. 8.2.2.22 ソフトスタート容量
      3. 8.2.3 アプリケーション曲線
  9. 電源に関する推奨事項
    1. 9.1 VCC容量
    2. 9.2 ブート容量
    3. 9.3 RVCC容量
  10. 10レイアウト
    1. 10.1 注意点
    2. 10.2 レイアウト例
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 開発サポート
        1. 11.1.1.1 WEBENCH®ツールによるカスタム設計
    2. 11.2 ドキュメントのサポート(該当する場合)
      1. 11.2.1 関連資料
    3. 11.3 ドキュメントの更新通知を受け取る方法
    4. 11.4 コミュニティ・リソース
    5. 11.5 商標
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

共振電流検知

ISNSピンは、高電圧容量を使用して共振容量に接続されます。容量CISNSと抵抗RISNSが微分器を形成します。共振容量電圧を微分することにより、共振電流が得られます。この微分信号がACであり、正にも負にもなります。ゼロクロスを検知するために、オペアンプ加算器を使用して信号をレベル・シフトします。IPolarityコンパレータが共振電流の方向を検出します。デジタル・ステートマシンがIPolarityにブランキング時間を実装し、デッドタイムの最初の400ns間のIPolarityエッジは無視されます。

OCP2閾値とOCP3閾値は、平均入力電流に基づいており平均入力電流を導き出すには、微分器出力を1次側スイッチオン信号HSONで多重化します。HSがオンであればMUX出力は微分器出力となり、HSがオフであればMUX出力は0となります。 それからローパス・フィルタを使用して、MUX出力を平均化します。フィルタの出力が、検知された平均入力電流となります。なお、MUXは正の電圧も負の電圧も通過する必要があります。OCP2異常とOCP3異常には、それぞれ2msと50msのタイマがあります。OCP2/OCP3コンパレータ出力が2msまたは50msの間、連続して高い場合にのみ、異常検知状態になります。

OCP1閾値は、ピーク共振電流に設定されます。ISNSピンの電圧はOCP1閾値OCP1Thと直接比較されます。正のハーフサイクルで、1サイクルにつき1回、ピーク共振電流を確認します。4サイクル連続でOCP1事象が検出された場合にのみ、OCP1異常検知状態になります。起動時には、最初の15サイクルのOCP1コンパレータ出力が無視されます。

UCC256304 fig42_sluscu6.gifFigure 35. ISNSブロック図