SLUSDV5B October   2019  – April 2020 UCC5304

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety-Limiting Values
    9. 6.9  Electrical Characteristics
    10. 6.10 Switching Characteristics
    11. 6.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Rising and Falling Time
    2. 7.2 Power-up UVLO Delay to OUTPUT
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 VDD, VCCI, and Under Voltage Lock Out (UVLO)
      2. 8.3.2 Input Stage
      3. 8.3.3 Output Stage
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Designing IN pin Input Filter
        2. 9.2.2.2 Estimating Junction Temperature
        3. 9.2.2.3 Selecting VCCI and VDD Capacitors
          1. 9.2.2.3.1 Selecting a VCCI Capacitor
          2. 9.2.2.3.2 Selecting a VDD Capacitor
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Component Placement Considerations
      2. 11.1.2 Grounding Considerations
      3. 11.1.3 High-Voltage Considerations
      4. 11.1.4 Thermal Considerations
    2. 11.2 Layout Example
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Power-up UVLO Delay to OUTPUT

Before the driver is ready to deliver a proper output state, there is a power-up delay from the UVLO rising edge to output and it is defined as tVCCI+ to OUT for VCCI UVLO, which is 40 µs typically, and tVDD+ to OUT for VDD UVLO, which is 22 µs typically. It is recommended to allow proper delay margin after the driver VCCI and VDD bias supplies are ready before applying the PWM signal at the IN pin. Figure 18 and Figure 19 show the power-up UVLO delay timing diagram for VCCI and VDD.

If the IN pin is active before VCCI or VDD have crossed above their respective on thresholds, the output will not update until tVCCI+ to OUT or tVDD+ to OUT after VCCI or VDD crossing its UVLO rising threshold. However, when either VCCI or VDD receive a voltage less than their respective off thresholds, there is <1µs delay, depending on the voltage slew rate on the supply pins, before the outputs are held low. This asymmetric delay is designed to ensure safe operation during VCCI or VDD brownouts.

UCC5304 VCCUVLO_hwslusck0.gifFigure 18. VCCI Power-up UVLO Delay
UCC5304 VDDUVLO_hwslusck0.gifFigure 19. VDD Power-up UVLO Delay