JAJSFO6G December   2015  – July 2024 TPS99000-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics—Transimpedance Amplifier Parameters
    6. 5.6  Electrical Characteristics—Digital to Analog Converters
    7. 5.7  Electrical Characteristics—Analog to Digital Converter
    8. 5.8  Electrical Characteristics—FET Gate Drivers
    9. 5.9  Electrical Characteristics—Photo Comparator
    10. 5.10 Electrical Characteristics—Voltage Regulators
    11. 5.11 Electrical Characteristics—Temperature and Voltage Monitors
    12. 5.12 Electrical Characteristics—Current Consumption
    13. 5.13 Power-Up Timing Requirements
    14. 5.14 Power-Down Timing Requirements
    15. 5.15 Timing Requirements—Sequencer Clock
    16. 5.16 Timing Requirements—Host and Diagnostic Port SPI Interface
    17. 5.17 Timing Requirements—ADC Interface
    18. 5.18 Switching Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Illumination Control
        1. 6.3.1.1 Illumination System High Dynamic Range Dimming Overview
        2. 6.3.1.2 Illumination Control Loop
        3. 6.3.1.3 Continuous Mode Operation
          1. 6.3.1.3.1 Output Capacitance in Continuous Mode
          2. 6.3.1.3.2 Continuous Mode Driver Distortion and Blanking Current
          3. 6.3.1.3.3 Continuous Mode S_EN2 Dissipative Load Shunt Options
          4. 6.3.1.3.4 Continuous Mode Constant OFF Time
          5. 6.3.1.3.5 Continuous Mode Current Limit
        4. 6.3.1.4 Discontinuous Mode Operation
          1. 6.3.1.4.1 Discontinuous Mode Pulse Width Limit
          2. 6.3.1.4.2 COMPOUT_LOW Timer in Discontinuous Operation
          3. 6.3.1.4.3 Dimming Within Discontinuous Operation Range
          4. 6.3.1.4.4 Multiple Pulse Heights to Increase Bit Depth
          5. 6.3.1.4.5 TIA Gain Adjustment
          6. 6.3.1.4.6 Current Limit in Discontinuous Mode
          7. 6.3.1.4.7 CMODE Big Cap Mode in Discontinuous Operation
      2. 6.3.2 Over-Brightness Detection
        1. 6.3.2.1 Photo Feedback Monitor BIST
        2. 6.3.2.2 Excessive Brightness BIST
      3. 6.3.3 Analog to Digital Converter
        1. 6.3.3.1 Analog to Digital Converter Input Table
      4. 6.3.4 Power Sequencing and Monitoring
        1. 6.3.4.1 Power Monitoring
      5. 6.3.5 DMD Mirror Voltage Regulator
      6. 6.3.6 Low Dropout Regulators
      7. 6.3.7 System Monitoring Features
        1. 6.3.7.1 Windowed Watchdog Circuits
        2. 6.3.7.2 Die Temperature Monitors
        3. 6.3.7.3 External Clock Ratio Monitor
      8. 6.3.8 Communication Ports
        1. 6.3.8.1 Serial Peripheral Interface (SPI)
    4. 6.4 Device Functional Modes
      1. 6.4.1 OFF
      2. 6.4.2 STANDBY
      3. 6.4.3 POWERING_DMD
      4. 6.4.4 DISPLAY_RDY
      5. 6.4.5 DISPLAY_ON
      6. 6.4.6 PARKING
      7. 6.4.7 SHUTDOWN
    5. 6.5 Register Maps
      1. 6.5.1 System Status Registers
      2. 6.5.2 ADC Control
      3. 6.5.3 General Fault Status
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 HUD
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Application Design Considerations
          1. 7.2.1.2.1 Photodiode Considerations
          2. 7.2.1.2.2 LED Current Measurement
          3. 7.2.1.2.3 Setting the Current Limit
          4. 7.2.1.2.4 Input Voltage Variation Impact
          5. 7.2.1.2.5 Discontinuous Mode Photo Feedback Considerations
          6. 7.2.1.2.6 Transimpedance Amplifiers (TIAs, Usage, Offset, Dark Current, Ranges, RGB Trim)
      2. 7.2.2 Headlight
        1. 7.2.2.1 Design Requirements
  9. Power Supply Recommendations
    1. 8.1 TPS99000-Q1 Power Supply Architecture
    2. 8.2 TPS99000-Q1 Power Outputs
    3. 8.3 Power Supply Architecture
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Power/High Current Signals
      2. 9.1.2 Sensitive Analog Signals
      3. 9.1.3 High-Speed Digital Signals
      4. 9.1.4 High Power Current Loops
      5. 9.1.5 Kelvin Sensing Connections
      6. 9.1.6 Ground Separation
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 サード・パーティ製品に関する免責事項
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 Trademarks
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 用語集
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
Continuous Mode S_EN2 Dissipative Load Shunt Options

The dissipative shunt, enabled by S_EN2 high, can be implemented with a variety of circuit types.

The circuit type selected for the shunt must be able to discharge the inductor used in the LED drive circuit, as well as protect against overvoltage conditions on the LED anode voltage.

The recommended option is to combine the open circuit protection Zener diode with the S_EN2 dissipative shunt functionality, as shown in the Dissipative Shunt, combination 1 figure. This particular option does not connect the S_EN2 pin but still implements the same functionality as the alternate circuits in Figure 6-9 and Dissipative Shunt, combination 2, which do connect the S_EN2 pin.

TPS99000-Q1 Dissipative Shunt / LED Open Circuit Protection Combination 1 Figure 6-10 Dissipative Shunt / LED Open Circuit Protection Combination 1

In this case, a low-power Zener diode is used to turn on a FET when the LED anode voltage exceeds the Zener voltage. The S_EN2 enable is not used in this configuration. Rather, the circuit intentionally is placed in an open circuit condition during the S_EN2 blanking time period. Then the protection circuit turns on and drains energy from the inductor (until the S_EN1 shunt is enabled and the LED anode voltage is reduced). The energy in this case is dissipated in a combination of the load resistor and FET. Care must be taken in the selection of the Zener diode and resistor divider to ensure the LED anode voltage does not exceed the RGB select FET breakdown voltage. (An option is to delete the load resistor entirely. Then the dissipation will occur only in the FET, and the LED anode voltage will stay closer to the Zener voltage under all conditions). The Zener voltage must be higher than the worst-case voltage of input VLED power rail to avoid unintentional triggering of the circuit. And Zener voltage must be below the Vds breakdown voltage of the LED selection FETs.

Alternative circuits with the same functionality can be seen below.

TPS99000-Q1 Dissipative Shunt / LED Open
                    Circuit Protection Combination 2 Figure 6-11 Dissipative Shunt / LED Open Circuit Protection Combination 2

In this circuit, the inductor current is discharged through the resistive path controlled by S_EN2.

TPS99000-Q1 Dissipative Shunt / LED Open
                    Circuit Protection Combination 3 Figure 6-12 Dissipative Shunt / LED Open Circuit Protection Combination 3

In this circuit, the inductor current is discharged through the power Zener diode.