JAJSGI5D November   2018  – June 2022 TLIN1441-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 ESD Ratings, IEC Specification
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Thermal Information
    6. 7.6 Power Supply Characteristics
    7. 7.7 Electrical Characteristics
    8. 7.8 AC Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Test Circuit: Diagrams and Waveforms
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  LIN Pin
        1. 9.3.1.1 LIN Transmitter Characteristics
        2. 9.3.1.2 LIN Receiver Characteristics
          1. 9.3.1.2.1 Termination
      2. 9.3.2  TXD (Transmit Input)
      3. 9.3.3  RXD (Receive Output)
      4. 9.3.4  WAKE (High Voltage Local Wake Up Input)
      5. 9.3.5  WDT/CLK (Pin Programmable Watchdog Delay Input/SPI Clock)
      6. 9.3.6  WDI/SDI (Watchdog Timer Input/SPI Serial Data In)
      7. 9.3.7  PIN/nCS (Pin Watchdog Select/SPI Chip Select)
      8. 9.3.8  LIMP (LIMP Home output – High Voltage Open Drain Output)
      9. 9.3.9  nWDR/SDO (Watchdog Timeout Reset Output/SPI Serial Data Out)
      10. 9.3.10 VSUP (Supply Voltage)
      11. 9.3.11 GND (Ground)
      12. 9.3.12 EN/nINT (Enable Input/Interrupt Output in SPI Mode)
      13. 9.3.13 nRST/nWDR (Reset Output/Watchdog Timeout Reset Output)
      14. 9.3.14 VCC (Supply Output)
      15. 9.3.15 Protection Features
        1. 9.3.15.1 TXD Dominant Time Out (DTO)
        2. 9.3.15.2 Bus Stuck Dominant System Fault: False Wake Up Lockout
        3. 9.3.15.3 Thermal Shutdown
        4. 9.3.15.4 Under Voltage on VSUP
        5. 9.3.15.5 Unpowered Device and LIN Bus
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Sleep Mode
      3. 9.4.3 Standby Mode
      4. 9.4.4 Failsafe Mode
      5. 9.4.5 Wake-Up Events
        1. 9.4.5.1 Wake-Up Request (RXD)
        2. 9.4.5.2 Local Wake Up (LWU) via WAKE Terminal
      6. 9.4.6 Mode Transitions
      7. 9.4.7 Voltage Regulator
        1. 9.4.7.1 VCC
        2. 9.4.7.2 Output Capacitance Selection
        3. 9.4.7.3 Low-Voltage Tracking
        4. 9.4.7.4 Power Supply Recommendation
      8. 9.4.8 Watchdog
        1. 9.4.8.1 Watchdog Error Counter
        2. 9.4.8.2 Pin Control Mode
        3. 9.4.8.3 SPI Control Programming
        4. 9.4.8.4 Watchdog Timing
    5. 9.5 Programming
      1. 9.5.1 SPI Communication
        1. 9.5.1.1 Chip Select Not (nCS)
        2. 9.5.1.2 Serial Clock Input (CLK)
        3. 9.5.1.3 Serial Data Input (SDI)
        4. 9.5.1.4 Serial Data Output (SDO)
    6. 9.6 Registers
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 Normal Mode Application Note
        2. 10.2.1.2 Standby Mode Application Note
        3. 10.2.1.3 TXD Dominant State Timeout Application Note
      2. 10.2.2 Detailed Design Procedures
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 サポート・リソース
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Overview

The TLIN1441-Q1 LIN transceiver is a Local Interconnect Network (LIN) physical layer transceiver, compliant to LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A and ISO/DIS 17987–4 with integrated wake-up and protection features. The LIN bus is a single-wire, bidirectional bus that typically is used in low-speed in-vehicle networks with data rates that range up to 20 kbps. The LIN receiver works up to 100 kbps supporting in-line programming. The device converts the LIN protocol data stream on the TXD input into a LIN bus signal using a current-limited wave-shaping driver which reduces electromagnetic emissions (EME). The receiver converts the data stream to logic-level signals that are sent to the microprocessor through the open-drain RXD pin. The LIN bus has two states: dominant state (voltage near ground) and recessive state (voltage near battery). In the recessive state, the LIN bus is pulled high by the internal pull-up resistor (45 kΩ) and a series diode.

Ultra-low current consumption is possible using the sleep mode. The TLIN1441-Q1 provides three methods to wake up from sleep mode: EN pin, WAKE pin and LIN bus. The device integrates a low dropout voltage regulator with a wide input from VSUP providing 5 V ±2% or 3.3 V ±2% with up to 125 mA of current depending upon system implementation.

The TLIN1441-Q1 integrates a window based watchdog supervisor which has a programmable delay and window ratio determined by pin strapping or SPI communication. The device watchdog is controlled by pin configuration or SPI depending upon the state of pin 9 at power up. At power up, if pin 9 is externally pulled to ground, the device is configured for pin control of the device. If pin 9 is connected to the nCS pin of the processors and not driven at power up, the internal pull up configures the device for 3.3 V SPI control. If the processor uses 5 V IO a 500k Ω pull up resistor to VCC is used for the 5 V version of the device. This allows the 5 V version of the device to work with both 3.3 V SPI or 5 V SPI. SPI communication is used for device configuration. In pin configuration nRST is asserted high when VCC increases above UVCC and stays high as long as VCC is above this threshold.

When the watchdog is controlled by the device pins, the state of the WDT pin determines the window time. WDI is used as the watchdog input trigger which is expected in the open window. If a watchdog event takes place, the nWDR pin goes low to reset the processors. When using SPI writing FFh to register 15h, WD_TRIG, during the open window restarts the watchdog timer. The supervised processor must trigger the WDI pin or WD_TRIG register within the defined window. When using SPI, the nRST pin becomes the watchdog event output trigger for the processor. The watchdog timer does not start until after the first input trigger on WDI or the WD_TRIG register.