JAJSI66A November   2019  – March 2020 TPS7A54

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      デジタル負荷の電源
      2.      RFコンポーネントの電源
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Voltage Regulation Features
        1. 8.3.1.1 DC Regulation
        2. 8.3.1.2 AC and Transient Response
      2. 8.3.2 System Start-Up Features
        1. 8.3.2.1 Programmable Soft Start (NR/SS Pin)
        2. 8.3.2.2 Internal Sequencing
          1. 8.3.2.2.1 Enable (EN)
          2. 8.3.2.2.2 Undervoltage Lockout (UVLO) Control
          3. 8.3.2.2.3 Active Discharge
        3. 8.3.2.3 Power-Good Output (PG)
      3. 8.3.3 Internal Protection Features
        1. 8.3.3.1 Foldback Current Limit (ICL)
        2. 8.3.3.2 Thermal Protection (Tsd)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Regulation
      2. 8.4.2 Disabled
      3. 8.4.3 Current Limit Operation
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Recommended Capacitor Types
        1. 9.1.1.1 Input and Output Capacitor Requirements (CIN and COUT)
        2. 9.1.1.2 Noise-Reduction and Soft-Start Capacitor (CNR/SS)
        3. 9.1.1.3 Feed-Forward Capacitor (CFF)
      2. 9.1.2  Soft Start and Inrush Current
      3. 9.1.3  Optimizing Noise and PSRR
      4. 9.1.4  Charge Pump Noise
      5. 9.1.5  Current Sharing
      6. 9.1.6  Adjustable Operation
      7. 9.1.7  Power-Good Operation
      8. 9.1.8  Undervoltage Lockout (UVLO) Operation
      9. 9.1.9  Dropout Voltage (VDO)
      10. 9.1.10 Device Behavior During Transition From Dropout Into Regulation
      11. 9.1.11 Load Transient Response
      12. 9.1.12 Reverse Current Protection Considerations
      13. 9.1.13 Power Dissipation (PD)
      14. 9.1.14 Estimating Junction Temperature
      15. 9.1.15 TPS7A54EVM Thermal Analysis
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Board Layout
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 開発サポート
        1. 12.1.1.1 評価基板
        2. 12.1.1.2 SPICEモデル
      2. 12.1.2 デバイスの項目表記
    2. 12.2 ドキュメントのサポート
      1. 12.2.1 関連資料
    3. 12.3 ドキュメントの更新通知を受け取る方法
    4. 12.4 コミュニティ・リソース
    5. 12.5 商標
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 Glossary
  13. 13メカニカル、パッケージ、および注文情報

Power Dissipation (PD)

Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must be as free as possible of other heat-generating devices that cause added thermal stresses.

As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. Equation 5 calculates PD:

Equation 5. TPS7A54 q_pd_bvs204.gif

NOTE

Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low dropout of the TPS7A54 allows for maximum efficiency across a wide range of output voltages.

The primary heat conduction path for the package is through the thermal pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area contains an array of plated vias that conduct heat to any inner plane areas or to a bottom-side copper plane.

The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device. Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to Equation 6. The equation is rearranged for output current in Equation 7.

Equation 6. TJ = TA = (RθJA × PD)
Equation 7. IOUT = (TJ – TA) / [RθJA × (VIN – VOUT)]

Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA recorded in the Electrical Characteristics table is determined by the JEDEC standard, PCB, and copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-designed thermal layout, RθJA is actually the sum of the VQFN package junction-to-case (bottom) thermal resistance (RθJCbot) plus the thermal resistance contribution by the PCB copper.