JAJSJ67E may   2020  – july 2023 UCC28782

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Detailed Pin Description
      1. 8.3.1  BUR Pin (Programmable Burst Mode)
      2. 8.3.2  FB Pin (Feedback Pin)
      3. 8.3.3  REF Pin (Internal 5-V Bias)
      4. 8.3.4  VDD Pin (Device Bias Supply)
      5. 8.3.5  P13 and SWS Pins
      6. 8.3.6  S13 Pin
      7. 8.3.7  IPC Pin (Intelligent Power Control Pin)
      8. 8.3.8  RUN Pin (Driver and Bias Source for Isolator)
      9. 8.3.9  PWMH and AGND Pins
      10. 8.3.10 PWML and PGND Pins
      11. 8.3.11 SET Pin
      12. 8.3.12 RTZ Pin (Sets Delay for Transition Time to Zero)
      13. 8.3.13 RDM Pin (Sets Synthesized Demagnetization Time for ZVS Tuning)
      14. 8.3.14 BIN, BSW, and BGND Pins
      15. 8.3.15 XCD Pin
      16. 8.3.16 CS, VS, and FLT Pins
    4. 8.4 Device Functional Modes
      1. 8.4.1  Adaptive ZVS Control with Auto-Tuning
      2. 8.4.2  Dead-Time Optimization
      3. 8.4.3  EMI Dither and Dither Fading Function
      4. 8.4.4  Control Law across Entire Load Range
      5. 8.4.5  Adaptive Amplitude Modulation (AAM)
      6. 8.4.6  Adaptive Burst Mode (ABM)
      7. 8.4.7  Low Power Mode (LPM)
      8. 8.4.8  First Standby Power Mode (SBP1)
      9. 8.4.9  Second Standby Power Mode (SBP2)
      10. 8.4.10 Startup Sequence
      11. 8.4.11 Survival Mode of VDD (INT_STOP)
      12. 8.4.12 Capacitor Voltage Balancing Function
      13. 8.4.13 Device Functional Modes for Bias Regulator Control
        1. 8.4.13.1 Mitigation of Switching Interaction with ACF Converter
        2. 8.4.13.2 Protection Functions for the Bias Regulator
        3. 8.4.13.3 BIN-Pin Related Protections
        4. 8.4.13.4 BSW-Pin Related Protections
      14. 8.4.14 System Fault Protections
        1. 8.4.14.1  Brown-In and Brown-Out
        2. 8.4.14.2  Output Over-Voltage Protection (OVP)
        3. 8.4.14.3  Input Over Voltage Protection (IOVP)
        4. 8.4.14.4  Over-Temperature Protection (OTP) on FLT Pin
        5. 8.4.14.5  Over-Temperature Protection (OTP) on CS Pin
        6. 8.4.14.6  Programmable Over-Power Protection (OPP)
        7. 8.4.14.7  Peak Power Limit (PPL)
        8. 8.4.14.8  Output Short-Circuit Protection (SCP)
        9. 8.4.14.9  Over-Current Protection (OCP)
        10. 8.4.14.10 External Shutdown
        11. 8.4.14.11 Internal Thermal Shutdown
      15. 8.4.15 Pin Open/Short Protections
        1. 8.4.15.1 Protections on CS pin Fault
        2. 8.4.15.2 Protections on P13 pin Fault
        3. 8.4.15.3 Protections on RDM and RTZ pin Faults
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application Circuit
      1. 9.2.1 Design Requirements for a 65-W USB-PD Adapter Application
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Bulk Capacitance and Minimum Bulk Voltage
        2. 9.2.2.2 Transformer Calculations
          1. 9.2.2.2.1 Primary-to-Secondary Turns Ratio (NPS)
          2. 9.2.2.2.2 Primary Magnetizing Inductance (LM)
          3. 9.2.2.2.3 Primary Winding Turns (NP)
          4. 9.2.2.2.4 Secondary Winding Turns (NS)
          5. 9.2.2.2.5 Auxiliary Winding Turns (NA)
          6. 9.2.2.2.6 Winding and Magnetic Core Materials
        3. 9.2.2.3 Clamp Capacitor Calculation
          1. 9.2.2.3.1 Primary-Resonance ACF
          2. 9.2.2.3.2 Secondary-Resonance ACF
        4. 9.2.2.4 Bleed-Resistor Calculation
        5. 9.2.2.5 Output Filter Calculation
        6. 9.2.2.6 Calculation of ZVS Sensing Network
        7. 9.2.2.7 Calculation of BUR Pin Resistances
        8. 9.2.2.8 Calculation of Compensation Network
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1  General Considerations
      2. 11.1.2  RDM and RTZ Pins
      3. 11.1.3  SWS Pin
      4. 11.1.4  VS Pin
      5. 11.1.5  BUR Pin
      6. 11.1.6  FB Pin
      7. 11.1.7  CS Pin
      8. 11.1.8  BIN Pin
      9. 11.1.9  BSW Pin
      10. 11.1.10 AGND Pin
      11. 11.1.11 BGND Pin
      12. 11.1.12 PGND Pin
      13. 11.1.13 EP Thermal Pad
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 サポート・リソース
    4. 12.4 Trademarks
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 用語集
  14. 13Mechanical, Packaging, and Orderable Information

Calculation of BUR Pin Resistances

Referring back to Section 8.3.1, it is recommended that ABM is entered at no higher than 50% to 60% of full load. Equation 1 and Equation 2, or Equation 1 and Equation 4, provide two equations for calculating two unknowns for the BUR-pin resistor values. However, first the target values of VCST(BUR), ΔVBUR(AAM), and ΔVBUR(LPM) must be chosen. Since the ratio of IBUR(AAM) to IBUR(LPM) is fixed at 1.852 (5 µA / 2.7 µA), it is necessary to target ΔVBUR(AAM) = 185 mV to ensure that ΔVBUR(LPM) = 100 mV, per guidance in Section 8.3.1.

The procedure to determine the value of VCST(BUR) is quite complex and is not provided in this datasheet. Instead, the UCC28782 Excel Calculator Tool automatically calculates this value based on user input and determines the VBUR target voltage VBUR_tgt. Using this target value, it further determines the appropriate values for RBUR2 and RBUR1 to meet the BUR pin targets based on user selections for the following set of equations. Note that expected values are used to determine recommended resistances, then actual resistances are selected from standard value series and the resulting actual voltages are calculated from the selected resistor values. Actual voltage results should be close to the targeted values.

Calculate expected ΔVBUR(LPM) value based on ΔVBUR(AAM) target value.

Equation 48. GUID-110F0BD3-34B9-4FA4-B99F-9863D8376667-low.png

Calculate the expected value for the parallel combination of RBUR1 with RBUR2.

Equation 49. GUID-5DB32E20-FE16-4993-AF4D-9BBBE61BAB5A-low.png

Calculate the recommended value for RBUR1 and choose a standard 1% tolerance value for RBUR1_act that is close to the recommended value.

Equation 50. GUID-87E9E262-B79E-46C1-BD9E-E5B24BC5085E-low.png

Calculate the recommended value for RBUR2 using RBUR1_act and choose a standard 1% tolerance value for RBUR2_act that is close to the recommended value.

Equation 51. GUID-E614A947-20AA-4099-87B6-C0BDCC26C92A-low.png

Calculate the actual values for VBUR, ΔVBUR(AAM), and ΔVBUR(LPM) using RBUR1_act and RBUR2_act.

Equation 52. GUID-DD8BFB92-3EC9-430C-8032-CF940C3A236B-low.png
Equation 53. GUID-1ECF8395-ADB3-4D09-AD6C-A534925D1F5E-low.png
Equation 54. GUID-2598B126-7EC0-4F03-9CBA-FEAA05114409-low.png

Finally, verify that the total summation of the BUR voltage with hysteresis does not exceed the BUR-pin upper clamp voltage of 2.4 V.

Equation 55. GUID-B484E5FB-E447-497E-AFA3-4AF8D4EF94B2-low.png