JAJSJE8A May   2021  – March 2022 TPS25830A-Q1 , TPS25832A-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Switching Characteristics
    8. 8.8 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1  Buck Regulator
      2. 10.3.2  Enable/UVLO and Start-Up
      3. 10.3.3  Switching Frequency and Synchronization (RT/SYNC)
      4. 10.3.4  Spread-Spectrum Operation
      5. 10.3.5  VCC, VCC_UVLO
      6. 10.3.6  Minimum ON-Time, Minimum OFF-Time
      7. 10.3.7  Internal Compensation
      8. 10.3.8  Bootstrap Voltage (BOOT)
      9. 10.3.9  RSNS, RSET, RILIMIT and RIMON
      10. 10.3.10 Overcurrent and Short Circuit Protection
        1. 10.3.10.1 Current Limit Setting using RILIMIT
        2. 10.3.10.2 Current Limit Setting for MFI OCP
        3. 10.3.10.3 Buck Average Current Limit Design Example
        4. 10.3.10.4 External MOSFET Gate Drivers
        5. 10.3.10.5 Cycle-by-Cycle Buck Current Limit
      11. 10.3.11 Overvoltage, IEC and Short to Battery Protection
        1. 10.3.11.1 VBUS and VCSN/OUT Overvoltage Protection
        2. 10.3.11.2 DP_IN and DM_IN Protection
        3. 10.3.11.3 CC IEC and OVP Protection
      12. 10.3.12 Cable Compensation
        1. 10.3.12.1 Cable Compensation Design Example
      13. 10.3.13 USB Port Control
      14. 10.3.14 FAULT Response
      15. 10.3.15 USB Specification Overview
      16. 10.3.16 USB Type-C® Basics
        1. 10.3.16.1 Configuration Channel
        2. 10.3.16.2 Detecting a Connection
        3. 10.3.16.3 Configuration Channel Pins CC1 and CC2
        4. 10.3.16.4 Current Capability Advertisement and VCONN Overload Protection
        5. 10.3.16.5 Plug Polarity Detection
      17. 10.3.17 Device Power Pins (IN, CSN/OUT, and PGND)
      18. 10.3.18 Thermal Shutdown
      19. 10.3.19 Power Wake
    4. 10.4 Device Functional Modes
      1. 10.4.1 Shutdown Mode
      2. 10.4.2 Standby Mode
      3. 10.4.3 Active Mode
      4. 10.4.4 Device Truth Table (TT)
      5. 10.4.5 USB Port Operating Modes
        1. 10.4.5.1 USB Type-C® Mode
        2. 10.4.5.2 Standard Downstream Port (SDP) Mode — USB 2.0, USB 3.0, and USB 3.1
        3. 10.4.5.3 Charging Downstream Port (CDP) Mode
        4. 10.4.5.4 Client Mode
      6. 10.4.6 High-Bandwidth Data-Line Switches
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1  Output Voltage
        2. 11.2.2.2  Switching Frequency
        3. 11.2.2.3  Inductor Selection
        4. 11.2.2.4  Output Capacitor Selection
        5. 11.2.2.5  Input Capacitor Selection
        6. 11.2.2.6  Bootstrap Capacitor Selection
        7. 11.2.2.7  VCC Capacitor Selection
        8. 11.2.2.8  Enable and Undervoltage Lockout Set-Point
        9. 11.2.2.9  Current Limit Set-Point
        10. 11.2.2.10 Cable Compensation Set-Point
        11. 11.2.2.11 LD_DET, POL, and FAULT Resistor Selection
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Ground Plane and Thermal Considerations
    3. 13.3 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Related Links
    3. 14.3 ドキュメントの更新通知を受け取る方法
    4. 14.4 サポート・リソース
    5. 14.5 Trademarks
    6. 14.6 静電気放電に関する注意事項
    7. 14.7 用語集
  15. 15Mechanical, Packaging, and Orderable Information

Enable/UVLO and Start-Up

The voltage on the EN/UVLO pin controls the ON or OFF operation of TPS2583xA-Q1. An EN/UVLO pin voltage higher than VEN/UVLO-H is required to start the internal regulator and begin monitoring the CCn lines for a valid Type-C connection. The internal USB monitoring circuitry is on when VIN is within the operation range and the EN/UVLO threshold is cleared; however, the buck regulator does not begin operation until a valid USB Type-C detection has been made. This feature ensures the "cold socket" (0 V) USB Type-C VBUS requirement is met. The EN/UVLO pin is an input and cannot be left open or floating. The simplest way to enable the operation of the TPS2583xA-Q1 is to connect the EN to VIN. This connection allows self-start-up of the TPS2583xA-Q1 when VIN is within the operation range.

DP and DM data switch will also be turned on after the EN/UVLO pin set high.

GUID-A2D5EC89-11BA-4D4F-A582-02B9B3BCB0BA-low.gifFigure 10-2 Precision Enable Behavior

Many applications will benefit from the employment of an enable divider RENT and RENB (Figure 10-3) to establish a precision system UVLO level for the TPS2583xA. The system UVLO can be used for sequencing, ensuring reliable operation, or supply protection, such as a battery discharge level. To ensure the USB port VBUS is within the 5-V operating range as required for USB compliance (for the latest USB specifications and requirements, refer to USB.org), TI suggest that the RENT and RENB resistors be chosen so that the TPS2583xA-Q1 enables when VIN is approximately 6 V. Considering the drop out voltage of the buck regulator and IR loses in the system, 6 V provides adequate margin to maintain VBUS within USB specifications. If system requirements such as a warm crank (start) automotive scenario require operation with VIN < 6 V, the values of RENT and RENB can be calculated assuming a lower VIN. An external logic signal can also be used to drive EN/UVLO input when a microcontroller is present and it is desirable to enable or disable the USB port remotely for other reasons.

GUID-4A7F81C2-8A13-406D-A573-AC70EAEDABE5-low.gifFigure 10-3 System UVLO by Enable Divider

UVLO configuration using external resistors is governed by the following equations:

Equation 1. GUID-E76CF1C8-4167-4F4E-B9D5-42172BCC1095-low.gif
Equation 2. GUID-C2CFC9BB-91FD-473C-BF3B-C18248AE6BBB-low.gif

Example:

VIN(ON) = 6 V (user choice)

RENB = 5 kΩ (user choice)

RENT = [(VIN(ON) / VEN/UVLO_H) –1] × RENB= 19.6 kΩ. Choose standard 20 kΩ.

Therefore VIN(OFF) = 6 V × [1 – (0.09 V / 1.2 V)] = 5.55 V

A typical start-up waveform is shown in Figure 10-4, indicating typical timings when Rd connected to CC line. The rise time of DCDC VBUS voltage is about 5 ms.

GUID-E1B77D87-43A7-41BB-B620-4382CECE00F4-low.gifFigure 10-4 Typical Start-Up Behavior, VIN = 13.5 V, CC1 = Rd, RIMON = 12.6 kΩ

For TPS2583xA-Q1, the pin voltage must meet the requirement below during 150 ms (typical) Rd assert deglitch time, see Figure 10-5:

  • VBUS < 0.8 V (typical), per Type-C requirement;
  • VDx_OUT < 2.2 V (typical);
  • VDx_IN < 1.5 V (typical);

After the TPS2583xA-Q1 Rd assert deglitch time, there is no additional requirement on these pins. In a real application, LD_DET pin can be used to configure the timing sequence.

GUID-20210309-CA0I-ZFXH-GFWZ-J9RPMG1QV1QS-low.gif Figure 10-5 TPS2583xA-Q1 Pin Voltage Requirement Under CDP/SDP Mode