JAJSJM2B July   2022  – April 2024 TPS929240-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Device Bias and Power
        1. 6.3.1.1 Power Bias (VBAT)
        2. 6.3.1.2 5V Low-Drop-Out Linear Regulator (VLDO)
        3. 6.3.1.3 Undervoltage Lockout (UVLO) and Power-On-Reset (POR)
        4. 6.3.1.4 Power Supply (SUPPLY)
        5. 6.3.1.5 Programmable Low Supply Warning
      2. 6.3.2 Constant Current Output
        1. 6.3.2.1 Reference Current with External Resistor (REF)
        2. 6.3.2.2 64-Step Programmable High-Side Constant-Current Output
      3. 6.3.3 PWM Dimming
        1. 6.3.3.1 PWM Generator
        2. 6.3.3.2 PWM Dimming Frequency
        3. 6.3.3.3 Blank Time
        4. 6.3.3.4 Phase Shift PWM Dimming
        5. 6.3.3.5 Linear Brightness Control
        6. 6.3.3.6 Exponential Brightness Control
      4. 6.3.4 FAIL-SAFE State Operation
      5. 6.3.5 On-Chip, 8-Bit, Analog-to-Digital Converter (ADC)
        1. 6.3.5.1 Minimum On Time for ADC Measurement
        2. 6.3.5.2 ADC Auto Scan
        3. 6.3.5.3 ADC Error
      6. 6.3.6 Diagnostic and Protection in NORMAL State
        1. 6.3.6.1  VBAT Undervoltage Lockout Diagnostics in NORMAL state
        2. 6.3.6.2  Low-Supply Warning Diagnostics in NORMAL State
        3. 6.3.6.3  Supply Undervoltage Diagnostics in NORMAL State
        4. 6.3.6.4  Reference Diagnostics in NORMAL state
        5. 6.3.6.5  Pre-Thermal Warning in NORMAL state
        6. 6.3.6.6  Overtemperature Protection in NORMAL state
        7. 6.3.6.7  Overtemperature Shutdown in NORMAL state
        8. 6.3.6.8  LED Open-Circuit Diagnostics in NORMAL state
        9. 6.3.6.9  LED Short-Circuit Diagnostics in NORMAL state
        10. 6.3.6.10 Single-LED Short-Circuit Detection in NORMAL state
        11. 6.3.6.11 EEPROM CRC Error in NORMAL state
        12. 6.3.6.12 Communication Loss Diagnostic in NORMAL State
        13. 6.3.6.13 Fault Masking in NORMAL state
        14.       53
      7. 6.3.7 Diagnostic and Protection in FAIL-SAFE states
        1. 6.3.7.1  Supply Undervoltage Lockout Diagnostics in FAIL-SAFE states
        2. 6.3.7.2  Low-Supply Warning Diagnostics in FAIL-SAFE states
        3. 6.3.7.3  Supply Undervoltage Diagnostics in FAIL-SAFE State
        4. 6.3.7.4  Reference Diagnostics in FAIL-SAFE states
        5. 6.3.7.5  Pre-Thermal Warning in FAIL-SAFE state
        6. 6.3.7.6  Overtemperature Protection in FAIL-SAFE state
        7. 6.3.7.7  Overtemperature Shutdown in FAIL-SAFE state
        8. 6.3.7.8  LED Open-Circuit Diagnostics in FAIL-SAFE state
        9. 6.3.7.9  LED Short-Circuit Diagnostics in FAIL-SAFE state
        10. 6.3.7.10 Single-LED Short-Circuit Detection in FAIL-SAFE state
        11. 6.3.7.11 EEPROM CRC Error in FAIL-SAFE State
        12. 6.3.7.12 Fault Masking in FAIL-SAFE state
        13.       Diagnostics Table in FAIL-SAFE State
      8. 6.3.8 OFAF Setup In FAIL-SAFE state
      9. 6.3.9 ERR Output
    4. 6.4 Device Functional Modes
      1. 6.4.1 POR State
      2. 6.4.2 INITIALIZATION state
      3. 6.4.3 NORMAL state
      4. 6.4.4 FAIL-SAFE state
      5. 6.4.5 PROGRAM state
    5. 6.5 Programming
      1. 6.5.1 FlexWire Protocol
        1. 6.5.1.1 Protocol Overview
        2. 6.5.1.2 UART Interface Address Setting
        3. 6.5.1.3 Status Response
        4. 6.5.1.4 Synchronization Byte
        5. 6.5.1.5 Device Address Byte
        6. 6.5.1.6 Register Address Byte
        7. 6.5.1.7 Data Frame
        8. 6.5.1.8 CRC Frame
        9. 6.5.1.9 Burst Mode
      2. 6.5.2 Registers Lock
      3. 6.5.3 Register Default Data
      4. 6.5.4 EEPROM Programming
        1. 6.5.4.1 Chip Selection by Pulling REF Pin High
        2. 6.5.4.2 Chip Selection by ADDR Pins Configuration
        3. 6.5.4.3 EEPROM Register Access and Burn
        4. 6.5.4.4 EEPROM PROGRAM State Exit
    6. 6.6 Register Maps
      1. 6.6.1 BRT Registers
      2. 6.6.2 IOUT Registers
      3. 6.6.3 CONF Registers
      4. 6.6.4 CTRL Registers
      5. 6.6.5 FLAG Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Smart Rear Lamp with Distributed LED Drivers
      2. 7.2.2 Design Requirements
      3. 7.2.3 Detailed Design Procedure
      4. 7.2.4 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 ドキュメントの更新通知を受け取る方法
    2. 8.2 サポート・リソース
    3. 8.3 Trademarks
    4. 8.4 静電気放電に関する注意事項
    5. 8.5 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

LED Open-Circuit Diagnostics in FAIL-SAFE state

The TPS929240-Q1 integrates LED open-circuit diagnostics to allow users to monitor LED status real time in FAIL-SAFE state. The device monitors voltage difference between SUPPLY and OUTXn to judge if there is any open-circuit failure. The SUPPLY voltage is also monitored in parallel with programmable threshold to determine if supply voltage is high enough for open-circuit diagnostics.

The open-circuit monitor is only effective during PWM-ON state with programmable minimal pulse width greater than t(BLANK) + t(OPEN_deg). The t(BLANK) is programmed by register BLANK. If PWM on-time is less than t(BLANK) + t(OPEN_deg), the device does not report any open-circuit fault. When the device supply voltage V(SUPPLY) is below the threshold V(LOWSUPTH) set by register LOWSUPTH, the LED open-circuit fault is not detected nor reported.

When the voltage difference V(SUPPLY) – V(OUTXn) is below threshold V(OPEN_th_rising) with duration longer than t(BLANK) + t(OPEN_deg), and the device supply voltage V(SUPPLY) is above the threshold V(LOWSUPTH), the TPS929240-Q1 pulls the ERR pin down with constant current sink to report fault and set flag registers including FLAG_OPENOUTXn, FLAG_OUT and FLAG_ERR to 1. In FAIL-SAFE state, the TPS929240-Q1 shuts down the normal current regulation and PWM dutycycle for the error output, then the device sources a current I(RETRY) to faulty output every t(SLS_Retry), 10 ms for retrying. I(RETRY) is programed by IRETRY register. The current I(RETRY) can be calculated with the below equation. When the voltage difference V(SUPPLY) – V(OUTXn) of error output rises above threshold V(OPEN_th_rising) with duration longer than t(BLANK) + t(OPEN_deg), or the supply voltage V(SUPPLY) is above the threshold V(LOWSUPTH), the device automatically resumes the normal current and PWM duty cycle setup and releases the ERR pin.

Equation 8. GUID-20200926-CA0I-LFDV-XFK0-NXSJLCFBJJJD-low.gif

where

  • IRETRY is programmable from 0 to 15.
  • Use Equation 1 to calculate I(FULL_RANGE).

The fault is latched in flag registers. When the open-circuit failure is removed, the master controller must write 1 to CLRFAULT to clear FLAG_OPENOUTXn, FLAG_OUT and FLAG_ERR. The CLRFAULT bit automatically returns to 0.