JAJSJS9B July   2023  – October 2024 DRV8262

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
      1. 5.4.1 Transient Thermal Impedance & Current Capability
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1  Overview
    2. 6.2  Functional Block Diagram
    3. 6.3  Feature Description
    4. 6.4  Device Operational Modes
      1. 6.4.1 Dual H-Bridge Mode (MODE1 = 0)
      2. 6.4.2 Single H-Bridge Mode (MODE1 = 1)
    5. 6.5  Current Sensing and Regulation
      1. 6.5.1 Current Sensing and Feedback
      2. 6.5.2 Current Regulation
        1. 6.5.2.1 Mixed Decay
        2. 6.5.2.2 Smart tune Dynamic Decay
      3. 6.5.3 Current Sensing with External Resistor
    6. 6.6  Charge Pump
    7. 6.7  Linear Voltage Regulator
    8. 6.8  VCC Voltage Supply
    9. 6.9  Logic Level, Tri-Level and Quad-Level Pin Diagrams
    10. 6.10 Protection Circuits
      1. 6.10.1 VM Undervoltage Lockout (UVLO)
      2. 6.10.2 VCP Undervoltage Lockout (CPUV)
      3. 6.10.3 Logic Supply Power on Reset (POR)
      4. 6.10.4 Overcurrent Protection (OCP)
      5. 6.10.5 Thermal Shutdown (OTSD)
      6. 6.10.6 nFAULT Output
      7. 6.10.7 Fault Condition Summary
    11. 6.11 Device Functional Modes
      1. 6.11.1 Sleep Mode
      2. 6.11.2 Operating Mode
      3. 6.11.3 nSLEEP Reset Pulse
      4. 6.11.4 Functional Modes Summary
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Driving Brushed-DC Motors
        1. 7.1.1.1 Brushed-DC Motor Driver Typical Application
        2. 7.1.1.2 Power Loss Calculations - Dual H-bridge
        3. 7.1.1.3 Power Loss Calculations - Single H-bridge
        4. 7.1.1.4 Junction Temperature Estimation
        5. 7.1.1.5 Application Performance Plots
      2. 7.1.2 Driving Stepper Motors
        1. 7.1.2.1 Stepper Driver Typical Application
        2. 7.1.2.2 Power Loss Calculations
        3. 7.1.2.3 Junction Temperature Estimation
      3. 7.1.3 Driving Thermoelectric Coolers (TEC)
    2. 7.2 Power Supply Recommendations
      1. 7.2.1 Bulk Capacitance
      2. 7.2.2 Power Supplies
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
      2. 7.3.2 Layout Example
  9. Package Thermal Considerations
    1. 8.1 DDW Package
      1. 8.1.1 Thermal Performance
        1. 8.1.1.1 Steady-State Thermal Performance
        2. 8.1.1.2 Transient Thermal Performance
    2. 8.2 DDV Package
    3. 8.3 PCB Material Recommendation
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Current Sensing with External Resistor

The IPROPI output accuracy is ±4% for 40% to 100% of rated current. If more accurate current sensing is desired, external sense resistors can also be used between the PGND pins and the system ground to sense the load currents, as shown below.

DRV8262 Current Sensing with External ResistorFigure 6-9 Current Sensing with External Resistor

The voltage drop across the external sense resistor should not exceed 300mV.

Place the sense resistors as close as possible to the corresponding IC pins. Use a symmetrical sense resistor layout to ensure good matching. Low-inductance sense resistors should be used to prevent voltage spikes and ringing. For optimal performance, the sense resistor should be a surface-mount resistor rated for high enough power. Because power resistors are larger and more expensive than standard resistors, it is common practice to use multiple standard resistors in parallel. This distributes the current and heat dissipation.