JAJSJT6A August   2020  – July 2021 TPS65994AD

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Recommended Capacitance
    5. 6.5  Thermal Information
    6. 6.6  Power Supply Characteristics
    7. 6.7  Power Consumption
    8. 6.8  PP_5V Power Switch Characteristics
    9. 6.9  PP_EXT Power Switch Characteristics
    10. 6.10 Power Path Supervisory
    11. 6.11 CC Cable Detection Parameters
    12. 6.12 CC VCONN Parameters
    13. 6.13 CC PHY Parameters
    14. 6.14 Thermal Shutdown Characteristics
    15. 6.15 ADC Characteristics
    16. 6.16 Input/Output (I/O) Characteristics
    17. 6.17 I2C Requirements and Characteristics
    18. 6.18 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  USB-PD Physical Layer
        1. 8.3.1.1 USB-PD Encoding and Signaling
        2. 8.3.1.2 USB-PD Bi-Phase Marked Coding
        3. 8.3.1.3 USB-PD Transmit (TX) and Receive (Rx) Masks
        4. 8.3.1.4 USB-PD BMC Transmitter
        5. 8.3.1.5 USB-PD BMC Receiver
        6. 8.3.1.6 Squelch Receiver
      2. 8.3.2  Power Management
        1. 8.3.2.1 Power-On And Supervisory Functions
        2. 8.3.2.2 VBUS LDO
      3. 8.3.3  Power Paths
        1. 8.3.3.1 Internal Sourcing Power Paths
          1. 8.3.3.1.1  PP_5Vx Current Clamping
          2. 8.3.3.1.2  PP_5Vx Local Overtemperature Shut Down (OTSD)
          3. 8.3.3.1.3  PP_5Vx Current Sense
          4. 8.3.3.1.4  PP_5Vx OVP
          5. 8.3.3.1.5  PP_5Vx UVLO
          6. 8.3.3.1.6  PP_5Vx Reverse Current Protection
          7. 8.3.3.1.7  Fast Role Swap
          8. 8.3.3.1.8  PP_CABLE Current Clamp
          9. 8.3.3.1.9  PP_CABLE Local Overtemperature Shut Down (OTSD)
          10. 8.3.3.1.10 PP_CABLE UVLO
        2. 8.3.3.2 Sink Path Control
          1. 8.3.3.2.1 Overvoltage Protection (OVP)
          2. 8.3.3.2.2 Reverse-Current Protection (RCP)
          3. 8.3.3.2.3 VBUS UVLO
          4. 8.3.3.2.4 Discharging VBUS to Safe Voltage
      4. 8.3.4  Cable Plug and Orientation Detection
        1. 8.3.4.1 Configured as a Source
        2. 8.3.4.2 Configured as a Sink
        3. 8.3.4.3 Configured as a DRP
        4. 8.3.4.4 Fast Role Swap Signal Detection
        5. 8.3.4.5 Dead Battery Advertisement
      5. 8.3.5  Default Behavior Configuration (ADCIN1, ADCIN2)
      6. 8.3.6  ADC
      7. 8.3.7  DisplayPort Hot-Plug Detect (HPD)
      8. 8.3.8  Digital Interfaces
        1. 8.3.8.1 General GPIO
        2. 8.3.8.2 I2C Interface
      9. 8.3.9  Digital Core
      10. 8.3.10 I2C Interface
        1. 8.3.10.1 I2C Interface Description
        2. 8.3.10.2 I2C Clock Stretching
        3. 8.3.10.3 I2C Address Setting
        4. 8.3.10.4 Unique Address Interface
    4. 8.4 Device Functional Modes
      1. 8.4.1 Pin Strapping to Configure Default Behavior
      2. 8.4.2 Power States
      3. 8.4.3 Thermal Shutdown
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Type-C VBUS Design Considerations
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Type-C Connector VBUS Capacitors
          2. 9.2.1.2.2 VBUS Schottky and TVS Diodes
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Notebook Design Supporting PD Charging
        1. 9.2.2.1 USB and DisplayPort Notebook Supporting PD Charging
          1. 9.2.2.1.1 Design Requirements
          2. 9.2.2.1.2 Detailed Design Procedure
            1. 9.2.2.1.2.1 USB Power Delivery Source Capabilities
            2. 9.2.2.1.2.2 USB Power Delivery Sink Capabilities
            3. 9.2.2.1.2.3 USB and DisplayPort Supported Data Modes
            4. 9.2.2.1.2.4 TUSB1046 Super Speed Mux GPIO Control
        2. 9.2.2.2 Thunderbolt Notebook Supporting PD Charging
          1. 9.2.2.2.1 Design Requirements
          2. 9.2.2.2.2 Detailed Design Procedure
            1. 9.2.2.2.2.1 USB Power Delivery Source Capabilities
            2. 9.2.2.2.2.2 USB Power Delivery Sink Capabilities
            3. 9.2.2.2.2.3 Thunderbolt Supported Data Modes
            4. 9.2.2.2.2.4 I2C Design Requirements
            5. 9.2.2.2.2.5 TS3DS10224 SBU Mux for AUX and LSTX/RX
  10. 10Power Supply Recommendations
    1. 10.1 3.3-V Power
      1. 10.1.1 VIN_3V3 Input Switch
      2. 10.1.2 VBUS 3.3-V LDO
    2. 10.2 1.5-V Power
    3. 10.3 Recommended Supply Load Capacitance
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Top TPS65994AD Placement and Bottom Component Placement and Layout
    2. 11.2 Layout Example
    3. 11.3 Component Placement
    4. 11.4 Routing PP_5V, VBUS, VIN_3V3, LDO_3V3, LDO_1V5
    5. 11.5 Routing CC and GPIO
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 サポート・リソース
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Package Option Addendum
      1. 13.1.1 Tape and Reel Information

CC Cable Detection Parameters

Operating under these conditions unless otherwise noted: 3.0 V ≤ VVIN_3V3 ≤ 3.6 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Type-C Source (Rp pull-up)
VOC_3.3 Unattached Px_CCy open circuit voltage while Rp enabled, no load VLDO_3V3_UVLO < VLDO_3V3 < 3.6 V, RCC = 47 kΩ 1.85 V
VOC_5 Attached Px_CCy open circuit voltage while Rp enabled, no load VPP5V_UVLO < VPP5V < 5.5 V, RCC = 47 kΩ 2.95 V
IRev Unattached reverse current on Px_CCy  VPx_CCy = 5.5V, VPx_CCx = 0V, VLDO_3V3_UVLO  < VLDO_3V3 < 3.6 V, VPP5V = 3.8 V , measure current into Px_CCy 10 µA
VPx_CCy = 5.5V, VPx_CCx = 0V, VLDO_3V3_UVLO  < VLDO_3V3 < 3.6 V, VPP5V = 0, -10oC≤TJ≤85oC, measure current into Px_CCy 10
IRpDef current source - USB Default 0 < VPx_CCy < 1.0 V, measure IPx_CCy 64 80 96 µA
IRp1.5 current source - 1.5A 4.75 V < VPP5V < 5.5 V, 0 < VPx_CCy < 1.5 V, measure IPx_CCy 166 180 194 µA
IRp3.0 current source - 3.0A 4.75 V < VPP5V < 5.5 V, 0 < VPx_CCy < 2.45 V, measure IPx_CCy 304 330 356 µA
Type-C Sink (Rd pull-down)
VSNK1 Open/Default detection threshold when Rd applied to Px_CCy rising 0.2 0.24 V
Open/Default detection threshold when Rd applied to Px_CCy falling 0.16 0.20 V
hysteresis 0.04 V
VSNK2 Default/1.5A detection threshold falling 0.62 0.68 V
Default/1.5A detection threshold rising 0.63 0.66 0.69 V
hysteresis 0.01 V
VSNK3 1.5A/3.0A detection threshold when Rd applied to Px_CCy falling 1.17 1.25 V
1.5A/3.0A detection threshold when Rd applied to Px_CCy rising 1.22 1.3 V
hysteresis 0.05 V
RSNK Rd pulldown resistance 0.25 V ≤ VPx_CCy ≤ 2.1 V, measure resistance on Px_CCy 4.1 6.1
RVCONN_DIS VCONN discharge resistance 0V ≤ VPx_CCy ≤  5.5 V, measure resistance on Px_CCy 4.1 6.1
VCLAMP Dead battery Rd clamp VVIN_3V3=0V, 64 µA < IPx_CCy<96 µA 0.25 1.32 V
VVIN_3V3=0V, 166 µA < IPx_CCy<194 µA 0.65 1.32
VVIN_3V3=0V, 304 µA < IPx_CCy< 356 µA 1.20 2.18
ROpen resistance from Px_CCy to GND when configured as open. VPx_VBUS = 0, VVIN_3V3=3.3V, VPx_CCy=5 V, measure resistance on Px_CCy 500
VPx_VBUS = 5V, VVIN_3V3 = 0, VPx_CCy=5 V, measure resistance on Px_CCy 500
VFRS Fast Role swap request voltage detection threshold on Px_CCy (falling) 495 515 535 mV
VFRS hysteresis 0.01 V
tFRS_DET Fast role swap signal detection time VPx_CCy must be below VFRS for at least this long before the FRS signal is detected 30 35 µs
tFRS_Resp response time of the Fast role swap comparator (rising) VPx_CCy rises from 0.24V to 0.64V 0.6 µs
Common (Source and Sink)
tCC deglitch time for comparators on Px_CCy 3.2 ms