JAJSKD7A December   2020  – May 2021 TPS92633-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power Supply (SUPPLY)
        1. 7.3.1.1 Power-On Reset
        2. 7.3.1.2 Supply Current in Fault Mode
      2. 7.3.2  Enable and Shutdown (EN)
      3. 7.3.3  Reference Current (IREF)
      4. 7.3.4  Constant-Current Output and Setting (INx)
      5. 7.3.5  Analog Current Control (ICTRL)
        1. 7.3.5.1 Off-Board Brightness Binning Resistor
        2. 7.3.5.2 NTC Resistor
      6. 7.3.6  Thermal Sharing Resistor (OUTx and RESx)
      7. 7.3.7  PWM Control (PWMx)
      8. 7.3.8  Supply Control
      9. 7.3.9  Diagnostics
        1. 7.3.9.1 IREF Short-to-GND Detection
        2. 7.3.9.2 IREF Open Detection
        3. 7.3.9.3 LED Short-to-GND Detection
        4. 7.3.9.4 LED Open-Circuit Detection
        5. 7.3.9.5 Single LED Short-Circuit Detection (SLS_REF)
        6. 7.3.9.6 LED Open-Circuit and Single LED Short-Circuit Detection Enable (DIAGEN)
        7. 7.3.9.7 Low Dropout Operation
        8. 7.3.9.8 Over-Temperature Protection
      10. 7.3.10 FAULT Bus Output With One-Fails–All-Fail
      11. 7.3.11 FAULT Table
      12. 7.3.12 LED Fault Summary
      13. 7.3.13 IO Pins Inner Connection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)
      2. 7.4.2 Normal Operation V(SUPPLY) ≥ 4.5 V
      3. 7.4.3 Low-Voltage Dropout Operation
      4. 7.4.4 Fault Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 BCM Controlled Rear Lamp with One-Fails-All-Fail Setup
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Independent PWM Controlled Rear Lamp with Off Board LED and Binning Resistor
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 サポート・リソース
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Supply Control

The TPS92633-Q1 can support supply control to turn ON and OFF output current. When the voltage applied on the SUPPLY pin is higher than the LED string forward voltage plus needed headroom voltage at required current, and the PWM pin voltage is high, the output current is turned ON and well regulated. However, when the voltage applied on the SUPPLY pin is lower than V(POR_falling), the output current is turned OFF. With this feature, the power supply voltage in designed pattern can control the output current ON/OFF. The brightness is adjustable if the ON/OFF frequency is fast enough. Because of the high accuracy design of PWM threshold in TPS92633-Q1, it enables a resistor divider on the PWM pin to set the SUPPLY threshold higher than LED forward voltage plus required headroom voltage as shown in Figure 7-6. The headroom voltage is basically the summation of V(DROPOUT) and V(CS_REG). When the voltage on the PWM pin is higher than VIH(PWM), the output current is turned ON. However, when the voltage on the PWM is lower than VIL(PWM), the output current is turned OFF. The SUPPLY threshold voltage can be calculated by using Equation 5.

GUID-DBE2D40E-53A5-4B00-9C40-B16BCAF00234-low.gif Figure 7-6 Application Schematic For Supply Control LED Brightness
Equation 5. GUID-675A5DBD-478D-4467-9408-337BC89E3B61-low.gif

where

  • VIH(PWM) = 1.26 V (maximum)