JAJSNN2B October   2023  – July 2024 UCC25660

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Power Proportional Control
        1. 7.3.1.1 Voltage Feedforward
      2. 7.3.2 VCR Synthesizer
      3. 7.3.3 Feedback Chain (Control Input)
      4. 7.3.4 Adaptive Dead-Time
      5. 7.3.5 Input Voltage Sensing
        1. 7.3.5.1 Brown in and Brown out Tresholds and Options
        2. 7.3.5.2 Output OVP and External OTP
      6. 7.3.6 Resonant Tank Current Sensing
    4. 7.4 Protections
      1. 7.4.1 Zero Current Switching (ZCS) Protection
      2. 7.4.2 Minimum Current Turn-off During Soft Start
      3. 7.4.3 Cycle by Cycle Current Limit and Short Circuit Protection
      4. 7.4.4 Overload (OLP) Protection
      5. 7.4.5 VCC OVP Protection
    5. 7.5 Device Functional Modes
      1. 7.5.1 Startup
        1. 7.5.1.1 With HV Startup
        2. 7.5.1.2 Without HV Startup
      2. 7.5.2 Soft Start Ramp
        1. 7.5.2.1 Startup Transition to Regulation
      3. 7.5.3 Light Load Management
        1. 7.5.3.1 Operating Modes (Burst Pattern)
        2. 7.5.3.2 Mode Transition Management
        3. 7.5.3.3 Burst Mode Threshold Programming
        4. 7.5.3.4 PFC On/Off
      4. 7.5.4 X-Capacitor Discharge
        1. 7.5.4.1 Detecting Through HV Pin Only
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  LLC Power Stage Requirements
        2. 8.2.2.2  LLC Gain Range
        3. 8.2.2.3  Select Ln and Qe
        4. 8.2.2.4  Determine Equivalent Load Resistance
        5. 8.2.2.5  Determine Component Parameters for LLC Resonant Circuit
        6. 8.2.2.6  LLC Primary-Side Currents
        7. 8.2.2.7  LLC Secondary-Side Currents
        8. 8.2.2.8  LLC Transformer
        9. 8.2.2.9  LLC Resonant Inductor
        10. 8.2.2.10 LLC Resonant Capacitor
        11. 8.2.2.11 LLC Primary-Side MOSFETs
        12. 8.2.2.12 Design Considerations for Adaptive Dead-Time
        13. 8.2.2.13 LLC Rectifier Diodes
        14. 8.2.2.14 LLC Output Capacitors
        15. 8.2.2.15 HV Pin Series Resistors
        16. 8.2.2.16 BLK Pin Voltage Divider
        17. 8.2.2.17 ISNS Pin Differentiator
        18. 8.2.2.18 TSET Pin
        19. 8.2.2.19 OVP/OTP Pin
        20. 8.2.2.20 Burst Mode Programming
        21. 8.2.2.21 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 VCCP Pin Capacitor
      2. 8.3.2 Boot Capacitor
      3. 8.3.3 V5P Pin Capacitor
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Schematics
        2. 8.4.2.2 Schematics
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Feedback Chain (Control Input)

Control of the output voltage is provided by a voltage regulator circuit located on the secondary side of the isolation barrier. The demand signal from the secondary-side regulator circuit is transferred across the isolation barrier using an optocoupler.

A constant current source IFB is generated from VCCP voltage and connected to FB pin. A resistor RFB is also connected to this current source with a PMOS in series. During normal operation, the PMOS is always on, so that the FB pin voltage is equal to the Zener diode reference voltage plus the voltage drop on the PMOS source to gate.

UCC25660 Feedback Chain Block
                    Diagram Figure 7-4 Feedback Chain Block Diagram
Equation 5. I R FBInternal = I FB I OPTO

The control signal FBReplica is depicted using the equation below.

Equation 6. F B R e p l i c a = I R F B I n t e r n a l R F B I n t e r n a l

From this equation, when IOPTO increases, IRFB decreases, decreasing the FBReplica . In this way, the control signal is inverted. When IOPTO continues to increase and reaches the value of IFB, the FB pin voltage starts to drop because there is not enough current flow through the PMOS. FB pin pulled low impacts the system transient response, due to the extra delay introduced by charging the parasitic capacitor of the optocoupler to pull up the FB pin voltage. A FB pin voltage clamp circuit is used to prevent this scenario. When FB pin voltage drops below the FB pin clamp voltage threshold, an extra current source is turned on to clamp the FB voltage. The clamp strength is IFBClamp . The FB pin clamp circuit improves the system transient performance from light load to heavy load. The FB pin clamp operation is shown in the figure below.

UCC25660 FB Pin Voltage vs FB Pin
                    Current Figure 7-5 FB Pin Voltage vs FB Pin Current