JAJSPS6 february   2023 TDC1000-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. ピン構成および機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報 #GUID-85677192-3B04-4958-89B0-56EA7EB89E00/APPNOTE_SPRA953
    5. 6.5 電気的特性
    6. 6.6 タイミング要件
    7. 6.7 スイッチング特性
    8. 6.8 代表的特性
  7. パラメータ測定情報
  8. 詳細説明
    1. 8.1 概要
    2. 8.2 機能ブロック図
    3. 8.3 機能説明
      1. 8.3.1 トランスミッタの信号パス
      2. 8.3.2 レシーバ信号パス
      3. 8.3.3 低ノイズ・アンプ (LNA)
      4. 8.3.4 プログラマブル・ゲイン・アンプ (PGA)
      5. 8.3.5 レシーバ・フィルタ
      6. 8.3.6 STOP パルス生成用のコンパレータ
        1. 8.3.6.1 スレッショルド検出器と DAC
        2. 8.3.6.2 ゼロクロス検出コンパレータ
        3. 8.3.6.3 イベント・マネージャ
      7. 8.3.7 同相バッファ (VCOM)
      8. 8.3.8 温度センサ
        1. 8.3.8.1 複数の RTD による温度測定
        2. 8.3.8.2 単一の RTD による温度測定
    4. 8.4 デバイスの機能モード
      1. 8.4.1 TOF 測定モード
        1. 8.4.1.1 モード 0
        2. 8.4.1.2 モード 1
        3. 8.4.1.3 モード 2
      2. 8.4.2 ステート・マシン
      3. 8.4.3 送信動作
        1. 8.4.3.1 送信パルスのカウント
        2. 8.4.3.2 TX の 180°パルス・シフト
        3. 8.4.3.3 トランスミッタのダンピング
      4. 8.4.4 RECEIVE 動作
        1. 8.4.4.1 シングル・エコー受信モード
        2. 8.4.4.2 マルチ・エコー受信モード
      5. 8.4.5 タイミング
        1. 8.4.5.1 タイミング制御と周波数スケーリング (CLKIN)
        2. 8.4.5.2 TX/RX 測定のシーケンスとタイミング
      6. 8.4.6 TOF (飛行時間) 制御
        1. 8.4.6.1 短い TOF 測定
        2. 8.4.6.2 標準 TOF 測定
        3. 8.4.6.3 パワー・ブランキングを使用する標準 TOF 測定
        4. 8.4.6.4 同相リファレンス電圧のセトリング・タイム
        5. 8.4.6.5 TOF 測定のインターバル
      7. 8.4.7 平均化とチャネル選択
      8. 8.4.8 エラー報告
    5. 8.5 プログラミング
      1. 8.5.1 シリアル・ペリフェラル・インターフェイス (SPI)
        1. 8.5.1.1 チップ・セレクト・バー (CSB)
        2. 8.5.1.2 シリアル・クロック (SCLK)
        3. 8.5.1.3 シリアル・データ入力 (SDI)
        4. 8.5.1.4 シリアル・データ出力 (SDO)
    6. 8.6 レジスタ・マップ
  9. アプリケーションと実装
    1. 9.1 アプリケーション情報
    2. 9.2 代表的なアプリケーション
      1. 9.2.1 液位と液体の識別の測定
        1. 9.2.1.1 設計要件
        2. 9.2.1.2 詳細な設計手順
          1. 9.2.1.2.1 液位測定
          2. 9.2.1.2.2 液体識別
        3. 9.2.1.3 アプリケーション曲線
      2. 9.2.2 水流量測定
        1. 9.2.2.1 設計要件
        2. 9.2.2.2 詳細な設計手順
          1. 9.2.2.2.1 規制と精度
          2. 9.2.2.2.2 超音波流量計での伝搬時間差方式
          3. 9.2.2.2.3 ΔTOF の精度要件の計算
          4. 9.2.2.2.4 動作
        3. 9.2.2.3 アプリケーション曲線
    3. 9.3 電源に関する推奨事項
    4. 9.4 レイアウト
      1. 9.4.1 レイアウトのガイドライン
      2. 9.4.2 レイアウト例
  10. 10デバイスおよびドキュメントのサポート
    1. 10.1 デバイスのサポート
      1. 10.1.1 開発サポート
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 商標
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 用語集
  11. 11メカニカル、パッケージ、および注文情報

レシーバ信号パス

RX 信号パスは、チャネル選択マルチプレクサと、それに続く LNA で構成されます。その後、必要に応じて LNA の出力を PGA に送信し、さらに増幅できます。最後に、信号は一連のコンパレータに供給され、プログラムされたスレッショルド・レベルに基づいて STOP ピンにパルスが生成されます。レシーバ・パスのブロック図を、図 8-1 に示します。

TDC1000-Q1 で得られる 20dB~41dB のゲインが不十分な場合は、COMPIN ピンの前にゲインを追加できます。同様に、受信した信号が強く、LNA や PGA のゲインが必要ない場合は、これらをバイパスして、トランスデューサの信号を COMPIN ピンに直接接続できます。

レシーバ・パスの各ステージの間で、トランスデューサの応答を中心とするバンドパス・フィルタを使用してノイズを低減できます。LNA、PGA、コンパレータの入力は、VCOM ピンの電位にバイアスすることに注意してください。COMPIN ピンに接続されるコンパレータは、エコーの認定と、エコー信号のゼロクロスに対応する STOP パルスの生成に使用されます。START パルスと STOP パルスを併せて使用し、媒体内のエコーの TOF を計算します。

GUID-639947C1-3AED-483A-B521-9DCAC7FACE35-low.gif図 8-1 TDC1000-Q1 レシーバ・パス