JAJSR90A September   2023  – July 2024 LMQ64480-Q1 , LMQ644A0-Q1 , LMQ644A2-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Wettable Flanks
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  Enable EN Pin and Use as VIN UVLO
      3. 7.3.3  Output Voltage Selection and Soft Start
      4. 7.3.4  SYNC Allows Clock Synchronization and Mode Selection
      5. 7.3.5  Clock Locking
      6. 7.3.6  Adjustable Switching Frequency
      7. 7.3.7  Power-Good Output Voltage Monitoring
      8. 7.3.8  Internal LDO, VCC UVLO, and BIAS Input
      9. 7.3.9  Bootstrap Voltage and VCBOOT-UVLO (CB1 and CB2 Pin)
      10. 7.3.10 CONFIG Device Configuration Pin
      11. 7.3.11 Spread Spectrum
      12. 7.3.12 Soft Start and Recovery From Dropout
      13. 7.3.13 Overcurrent and Short-Circuit Protection
      14. 7.3.14 Hiccup
      15. 7.3.15 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 Peak Current Mode Operation
        2. 7.4.3.2 Auto Mode Operation
          1. 7.4.3.2.1 Diode Emulation
        3. 7.4.3.3 FPWM Mode Operation
        4. 7.4.3.4 Minimum On-time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
        6. 7.4.3.6 Recovery from Dropout
        7. 7.4.3.7 Other Fault Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Choosing the Switching Frequency
        2. 8.2.2.2  Setting the Output Voltage
        3. 8.2.2.3  Inductor Selection
        4. 8.2.2.4  Output Capacitor Selection
        5. 8.2.2.5  Input Capacitor Selection
        6. 8.2.2.6  BOOT Capacitor
        7. 8.2.2.7  VCC
        8. 8.2.2.8  CFF and RFF Selection
        9. 8.2.2.9  SYNCHRONIZATION AND MODE
        10. 8.2.2.10 External UVLO
        11. 8.2.2.11 Typical Thermal Performance
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Ground and Thermal Considerations
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 サード・パーティ製品に関する免責事項
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Output Capacitor Selection

The output capacitor value and ESR determine the output voltage ripple and load transient performance. The output capacitor is usually limited by the load transient requirements rather than the output voltage ripple. Table 8-2 can be used to find capacitor values for COUT and CFF for a few common applications. Note that 4.99-kΩ RFF can be used in series with CFF to limit high frequency noise into the FB pin. In this example, 3.3 VOUT and 2.1 MHz, good transient performance is desired. From the table select 3 × 22-µF ceramic as the output capacitor and 10 pF as CFF. For other voltage a frequency combinations Cout can be estimated using the desired crossover frequency (fx) and output voltage. Crossover is usually limited by the sampling pole created from the switching frequency. Thus, the crossover is usually a percentage such as 1/10th the switching frequency.

Table 8-2 Selected Output Capacitor and CFF Values
FREQUENCYIOUTTRANSIENT PERFORMANCE3.3-V OUTPUT5-V OUTPUT
COUT (per phase)CFFCOUTCFF
400 kHz6 AMinimum3 × 47-µF ceramic2 × 47-µF ceramic
400 kHz6 ABetter Transient4 × 47-µF ceramic10 pF3 × 47-µF ceramic10 pF
2.1 MHz6 AMinimum3 × 22-µF ceramic2 × 22-µF ceramic
2.1 MHz6 ABetter Transient4 × 22-µF ceramic10 pF3 × 22-µF ceramic10 pF