JAJSU48A April   2024  – May 2024 ISOM8610

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics
    10. 5.10 Switching Characteristics
  7. Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Sizing RIN
      3. 9.2.3 Application Curve
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 Trademarks
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 用語集
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Overview

The ISOM8610 are opto-emulator switches that provide up to 3.75kV isolation across barrier and are pin-compatible, drop-in replacements to popular photo-relays. While standard optocouplers use an LED as the input stage, the ISOM8610 uses a current controlled emulated diode as the input stage. The input stage is isolated from the driver stage by TI's proprietary silicon dioxide-based (SiO2) isolation barrier, which not only provides robust isolation, but also offers best-in-class performance.

The ISOM8610 isolates high voltage signals and offer performance, reliability, and flexibility advantages over traditional optocouplers which age over time. The devices are based on CMOS isolation technology for low-power and high-speed operation, therefore the devices are resistant to the wear-out effects found in optocouplers that degrade performance with increasing temperature, forward current, and device age.

The functional block diagram of the ISOM8610 is shown in Functional Block Diagram. The input signal is transmitted across the isolation barrier using an on-off keying (OOK) modulation scheme. The transmitter sends a high-frequency carrier across the barrier to represent switch-ON state and sends no signal to represent the switch-OFF state. The receiver demodulates the signal after advanced signal conditioning and controls the state of the output MOSFETs. These devices also incorporate advanced circuit techniques to maximize CMTI performance and minimize radiated emissions. Figure 8-2 shows conceptual detail of how the OOK scheme works.