SBAA395B May   2022  – December 2023 PCMD3140 , TLV320ADC3120 , TLV320ADC3140 , TLV320ADC5120 , TLV320ADC5140 , TLV320ADC6120 , TLV320ADC6140

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Near-Field and Far-Field
    1. 1.1 Definition
  5. 2Constituents in the Far-Field Application
  6. 3Understanding of Digital and Analog Microphone
    1. 3.1 Digital PDM Microphone System
    2. 3.2 Analog Microphone with ADC System
  7. 4Quantization Noise Density for Each Microphone
  8. 5Dynamic Range in Far-Field
    1. 5.1 DR
    2. 5.2 DR in Microphone
    3. 5.3 DRE in the TLV320ADC5140/PCM5140-Q1
    4. 5.4 DRE Performance in TLV320ADC5140/PCM5140-Q1
  9. 6Design of Any Microphone with the TLV320ADC51x0/PCM51x0-Q1
    1. 6.1 Structure of the TLV320ADC51x0/PCM51x0-Q1
      1. 6.1.1 Design Example 1: Only Analog Microphone System
      2. 6.1.2 Design Example 2: Only Digital Microphone System
      3. 6.1.3 Design Example 3: Analog and Digital Microphone Combination System
  10. 7Conclusion
  11. 8Revision History

Abstract

Far-field audio applications such as AI speakers and sound bars, AI TVs, and other voice-activated products need the following:

  • Wide DR (Dynamic Range)
  • High AOP (Acoustic Overload Point)
  • Low THD (Total Harmonic Distortion) even for very loud signal
  • Low equivalent input noise
  • Small form factor with low power consumption

All of these electrical specifications have led to the voice commander getting precise voice command recognition without any unexpected errors. This application report discusses and shows the benefits and strengths of analog microphones with Texas Instruments TLV320ADC51x0/PCM51x0-Q1 system in far-field audio application.