SLLA590 May   2022 THVD8000 , THVD8010

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
  4. 2THVD80x0 Devices Theory of Operation and Limitations of Use
    1. 2.1 Overview and Similarities between Standard RS-485 Transceivers and THVD80xo Devices
    2. 2.2 Differences between Standard RS-485 Transceivers and THVD8000/8010
    3. 2.3 Standard Approach to Using THVD80xo Devices to Communicate over Power Lines
    4. 2.4 Drawbacks to Standard Approach with Higher Voltage Systems
  5. 3Integration of Line Driver with THVD80x0 Devices to Drive Low Impedance Loads
    1. 3.1 Overcoming Drive Strength Requirement with A Line Driver Amplifier
    2. 3.2 Modification to Typical System Signal Chain Path Through Integration of Line Driver
  6. 4High Voltage Interface and Communication Interface Power Supply
    1. 4.1 Line Driver Output and Input RX signal Protection Circuit
    2. 4.2 High-Voltage Interface
    3. 4.3 Receive Path Optional Bandpass
  7. 5System Level View and Relation to Higher Voltage Implementations
    1. 5.1 Powering the Powerline Communication System
    2. 5.2 System Overview with Selected Test Results
    3. 5.3 Changes to Design for Higher Voltage AC or DC Applications
  8. 6Summary
  9. 7References

Receive Path Optional Bandpass

The optional bandpass filter on the RX path that is shown in Figure 4-4 is used to help suppress any frequencies that are outside the modulated carrier frequency of the data signal. Since the HV interface does some initial filtering this is not necessary, but it helpful in further cleaning up the signal. The BOOSTXL-AFE031-DF1 also provide a good RX path architecture which can be utilized here. This is shown in Figure 4-4

Figure 4-4 Bandpass Circuit Design

With a basic understanding of the signal path for the system – it is time to look at the system from top level including powering and operating the system.