SLOS841B September   2013  – January 2015 TPA3131D2 , TPA3132D2

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Electrical Characteristics
    6. 6.6 AC Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Gain Setting and Master and Slave
      2. 7.3.2  Input Impedance
      3. 7.3.3  Start-up/Shutdown Operation
      4. 7.3.4  PLIMIT Operation
      5. 7.3.5  GVDD Supply
      6. 7.3.6  BSPx and BSNx Capacitors
      7. 7.3.7  Differential Inputs
      8. 7.3.8  Device Protection System
      9. 7.3.9  DC Detect Protection
      10. 7.3.10 Short-Circuit Protection and Automatic Recovery Feature
      11. 7.3.11 Thermal Protection
      12. 7.3.12 Efficiency: LC Filter Required with the Traditional Class-D Modulation Scheme
      13. 7.3.13 Ferrite Bead Filter Considerations
      14. 7.3.14 When to Use an Output Filter for EMI Suppression
      15. 7.3.15 AM Avoidance EMI Reduction
    4. 7.4 Device Functional Modes
      1. 7.4.1 Mono Mode (PBTL)
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Select the PWM Frequency
        2. 8.2.2.2 Select the Amplifier Gain and Master/Slave Mode
        3. 8.2.2.3 Select Input Capacitance
        4. 8.2.2.4 Select Decoupling Capacitors
        5. 8.2.2.5 Select Bootstrap Capacitors
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Design
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage, VCC PVCC, AVCC –0.3 30 V
Input voltage, VI INPL, INNL, INPR, INNR –0.3 6.3 V
PLIMIT, GAIN / SLV, SYNC –0.3 GVDD+0.3 V
AM0, AM1, AM2, MUTE, SDZ –0.3 PVCC+0.3 V
Slew rate, maximum AM0, AM1, AM2, MUTE, SDZ 10 V/ms
Operating free-air temperature, TA –40 85 °C
Operating junction temperature, TJ –40 150 °C
Storage temperature, Tstg –40 125 °C

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Supply voltage PVCC, AVCC 4.5 26 V
VIH High-level input voltage AM0, AM1, AM2, MUTE, SDZ, SYNC 2 V
VIL Low-level input voltage AM0, AM1, AM2, MUTE, SDZ, SYNC 0.8 V
VOL Low-level output voltage FAULTZ, RPULL-UP = 100 kΩ, PVCC = 26 V 0.8 V
IIH High-level input current AM0, AM1, AM2, MUTE, SDZ (VI = 2 V, VCC = 18 V) 50 µA
RL(BTL) Minimum load Impedance Output filter: L = 10 µH, C = 680 nF 3.2 4 Ω
RL(PBTL) Output filter: L = 10 µH, C = 1 µF 1.6
Lo Output-filter Inductance Minimum output filter inductance under short-circuit condition 1 µH

6.4 Thermal Information

THERMAL METRIC(1)(2) TPA313xD2 UNIT
VQFN
32 PINS
RθJA Junction-to-ambient thermal resistance 31.3 °C/W
ψJT Junction-to-top characterization parameter 0.2
ψJB Junction-to-board characterization parameter 5.5
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The heat sink drawing used for the thermal model data are shown in the application section, size: 14mm wide, 50mm long, 25mm high.

6.5 DC Electrical Characteristics

TA = 25°C, AVCC = PVCC = 7.4 V to 26 V, RL = 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
| VOS | Class-D output offset voltage (measured differentially) VI = 0 V, Gain = 36 dB 1.5 15 mV
ICC Quiescent supply current SDZ = 2 V, No load or filter, PVCC = 7.4 V (TPA3131D2) 16 mA
SDZ = 2 V, No load or filter, PVCC = 19 V (TPA3132D2) 27
ICC(SD) Quiescent supply current in shutdown mode SDZ = 0.8 V, No load or filter <50 µA
rDS(on) Drain-source on-state resistance, measured pin to pin PVCC = 7.4V to 19V V, Iout = 500 mA, TJ = 25°C 120
G Gain (MSTR) R1 = 5.6 kΩ, R2 = Open 19 20 21 dB
R1 = 20 kΩ, R2 = 100 kΩ 25 26 27
R1 = 39 kΩ, R2 = 100 kΩ 31 32 33 dB
R1 = 47 kΩ, R2 = 75 kΩ 35 36 37
G Gain (SLV) R1 = 51 kΩ, R2 = 51 kΩ 19 20 21 dB
R1 = 75 kΩ, R2 = 47 kΩ 25 26 27
R1 = 100 kΩ, R2 = 39 kΩ 31 32 33 dB
R1 = 100 kΩ, R2 = 16 kΩ 35 36 37
ton Turn-on time SDZ = 2 V 10 ms
tOFF Turn-off time SDZ = 0.8 V 2 µs
GVDD Gate drive supply IGVDD < 200 µA 6.4 6.9 7.4 V
VO Output voltage maximum under PLIMIT control V(PLIMIT) = 2 V; VI = 1 Vrms 6.75 7.90 8.75 V

6.6 AC Electrical Characteristics

TA = 25°C, AVCC = PVCC = 7.4 V to 24 V, RL = 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
KSVR Power supply ripple rejection 200 mVPP ripple at 1 kHz, Gain = 20 dB, Inputs AC-coupled to GND –70 dB
PO Continuous output power RL = 8 Ω, THD+N = 10%, f = 1 kHz, PVCC = 7.4 V (TPA3131D2) 4 W
RL = 4 Ω, THD+N = 10%, f = 1 kHz, PVCC = 7.4 V (TPA3131D2) 7.3
RL = 8 Ω, THD+N = 10%, f = 1 kHz, PVCC = 19V (TPA3132D2) 25
RL = 4 Ω, THD+N = 10%, f = 1 kHz, PVCC = 19V (TPA3132D2) 42
THD+N Total harmonic distortion + noise RL = 8 Ω, f = 1 kHz, PO = 0.1W to 2 W (TPA3132D2)
RL = 8 Ω, f = 1 kHz, PO = 0.1W to 12.5 W (TPA3131D2)
0.1%
Vn Output integrated noise 20 Hz to 22 kHz, A-weighted filter, Gain = 20 dB 70 µV
–80 dBV
Crosstalk VO = 1 Vrms, Gain = 20 dB, f = 1 kHz –100 dB
SNR Signal-to-noise ratio Maximum output at THD+N < 1%, f = 1 kHz, Gain = 20 dB, A-weighted (TPA3131D2, PVCC = 7.4V) 98 dB
Maximum output at THD+N < 1%, f = 1 kHz, Gain = 20 dB, A-weighted (TPA3131D2, PVCC = 19V) 105
fOSC Oscillator frequency AM2=0, AM1=0, AM0=0 376 400 424 kHz
AM2=0, AM1=0, AM0=1 470 500 530
AM2=0, AM1=1, AM0=0 564 600 636
AM2=0, AM1=1, AM0=1 940 1000 1060
AM2=1, AM1=0, AM0=0 1128 1200 1278
AM2=1, AM1=0, AM0=1 Reserved
AM2=1, AM1=1, AM0=0
AM2=1, AM1=1, AM0=1
Thermal trip point 150+ °C
Thermal hysteresis 15 °C
Over current trip point TPA3131D2 3.4 A
TPA3132D2 7

6.7 Typical Characteristics

fs = 400 kHz (unless otherwise noted)
G003_THDvPo7p4V4R.pngFigure 1. Total Harmonic Distortion + Noise (BTL) vs Output Power
G004_EffvPo_7p4V_4R_8R.pngFigure 3. Power Efficiency (BTL) vs Supply Voltage
G007_THDvPo_19V_4R_8R.pngFigure 5. Total Harmonic Distortion + Noise (BTL) vs Output Power
G008_EffvPo_19V_4R_8R.pngFigure 7. Power Efficiency (BTL) vs Output Power
G011_THDvPo_19V_2R_4R_PBTL.pngFigure 9. Total Harmonic Distortion + Noise (TPA3132D2 PBTL) vs Output Power
G0012_EffvPo_19V_2R_4R_PBTL.pngFigure 11. Power Efficiency (TPA3132D2 PBTL) vs Output Power
G013_PovPlim_26V_4R_8R.pngFigure 13. Maximum Output Power (BTL) vs PLimit Voltage
G014_PovPVcc_8R with PLIMIT curve.pngFigure 15. Maximum Output Power (BTL) vs Supply Voltage
G017_Crosstalk_vs_Freq_24V_8R.pngFigure 17. Crosstalk (BTL) vs Frequency
G001_THDvsF_Ch1_7p4V.pngFigure 2. Total Harmonic Distortion + Noise (BTL) vs Frequency
G002_THDvsF_7p4V_4R.pngFigure 4. Total Harmonic Distortion + Noise (BTL) vs Frequency
G005_THDvsF_19V.pngFigure 6. Total Harmonic Distortion + Noise (BTL) vs Frequency
G006_THDvsF_19V_4R.pngFigure 8. Total Harmonic Distortion + Noise (BTL) vs Frequency
G009_THDvsF_19V_4R_PBTL.pngFigure 10. Total Harmonic Distortion + Noise (TPA3132D2 PBTL) vs Frequency
G010_THDvsF_19V_2R_PBTL.pngFigure 12. Total Harmonic Distortion + Noise (TPA3132D2 PBTL) vs Frequency
G016_Gain_PhasevFreq_12V_8R.pngFigure 14. Gain/Phase (BTL) vs Frequency
G015_PovPVcc_4R with PLIMIT curve.pngFigure 16. Maximum Output Power (BTL) vs Supply Voltage
G018_kSVRvsFreq_12V_8R_200mVpp.pngFigure 18. PSRR vs Frequency