SLUAA69 July   2020  – MONTH  TPS548D22

 

  1.   Trademarks
  2. 1Introduction
    1. 1.1 LED Driver Methods
    2. 1.2 Power Supply Solutions for Common-Cathode LED Display
  3. 2Principle of Synchronous Buck with Sinking Current Application
  4. 3 Design Considerations and Analysis
    1. 3.1 Choose an IC with Sufficient Current Sinking
    2. 3.2 Choose IC Supporting Negative OCP
    3. 3.3 Choose an IC Supporting Pre-Bias Startup
    4. 3.4 Analysis of System Startup
  5. 4 TI Devices and Functionalities
    1. 4.1 Negative OCP Functionality
    2. 4.2 Hiccup Mode and Latch-off Mode
    3. 4.3 UVP and OVP Functionality
  6. 5 TI Solution
  7. 6 Bench Test and Result
    1. 6.1 Bench Test Configuration
    2. 6.2 Startup Waveforms and Behaviors Analysis Overview
    3. 6.3 Startup Waveforms and Behaviors Analysis at the First OVP
    4. 6.4 Startup Waveforms and Behaviors Analysis after the First OVP
    5. 6.5 Waveforms and Behaviors Analysis of Startup Solution with Lazy Loading
  8. 7 Conclusion
  9. 8References

Introduction

A LED display (LED matrix display system, LED signage) is a flat-panel display that uses an array of light-emitting diodes as pixels for a video display. The resolution of LED displays continues to increase as pixel pitch becomes smaller to achieve better visual effects. Higher pixel density requires higher power consumption and introduces thermal issues. The traditional common-anode LED display can no longer meet the energy-saving requirements in high-resolution LED displays. In response, the industry has recently proposed a new common-cathode LED display technology suitable for high-resolution LED display.