SLVAE87A December   2020  – October 2023 BQ79600-Q1 , BQ79612-Q1 , BQ79614-Q1 , BQ79616-Q1 , BQ79652-Q1 , BQ79654-Q1 , BQ79656-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. NPN LDO Supply
  5. AVDD, CVDD outputs and DVDD, NEG5, REFHP and REFHM
    1. 2.1 Base Device
    2. 2.2 Design Summary
  6. OTP Programming
  7. Cell Voltage Sense (VCn) and Cell Balancing (CBn)
    1. 4.1 Cell Voltage Sense (VCn)
    2. 4.2 Cell Balancing (CBn)
      1. 4.2.1 Non-Adjacent Cell Balancing
      2. 4.2.2 Adjacent Cell Balancing
      3. 4.2.3 Cell Balancing With External FET
    3. 4.3 Using Fewer Than 16 Cells
      1. 4.3.1 Design Summary
  8. Bus Bar Support
    1. 5.1 Bus Bar on BBP/BBN
    2. 5.2 Typical Connection
      1. 5.2.1 Cell Balancing Handling
    3. 5.3 Bus Bar on Individual VC Channel
    4. 5.4 Multiple Bus Bar Connections
      1. 5.4.1 Two Bus Bar Connections to One Device
      2. 5.4.2 Three Bus Bar Connections to One Device
      3. 5.4.3 Cell Balancing Handling
  9. TSREF
  10. General Purpose Input-Output (GPIO) Configurations
    1. 7.1 Ratiometric Temperature Measurement
    2. 7.2 SPI Mode
      1. 7.2.1 Support 8 NTC Thermistors With SPI Slave Device
      2. 7.2.2 Design Summary
  11. Base and Bridge Device Configuration
    1. 8.1 Power Mode Pings and Tones
      1. 8.1.1 Power Mode Pings
      2. 8.1.2 Power Mode Tones
      3. 8.1.3 Ping and Tone Propagation
    2. 8.2 UART Physical Layer
      1. 8.2.1 Design Considerations
  12. Daisy-Chain Stack Configuration
    1. 9.1 Communication Line Isolation
      1. 9.1.1 Capacitor Only Isolation
      2. 9.1.2 Capacitor and Choke Isolation
      3. 9.1.3 Transformer Isolation
      4. 9.1.4 Design Summary
    2. 9.2 Ring Communication
    3. 9.3 Re-Clocking
      1. 9.3.1 Design Summary
  13. 10Multi-Drop Configuration
  14. 11Main ADC Digital LPF
  15. 12AUX Anti Aliasing Filter (AAF)
  16. 13Layout Guidelines
    1. 13.1 Ground Planes
    2. 13.2 Bypass Capacitors for Power Supplies and References
    3. 13.3 Cell Voltage Sensing
    4. 13.4 Daisy Chain Communication
  17. 14BCI Performance
  18. 15Common and Differential Mode Noise
    1. 15.1 Design Consideration
  19. 16Revision History

Main ADC Digital LPF

Each differential VC channel measurement is equipped with a post-ADC LPF. The LPFs have much lower cutoff frequency (fcutoff). There are 7 fcutoff options: 6.5 Hz, 13 Hz, 26 Hz, 53 Hz, 111 Hz, 240 Hz, and 600 Hz, configurable through the ADC_CONF1[LPF_VCELL2:0] setting. Once an fcutoff value is selected and the LPFs are enabled by setting ADC_CTRL1[LPF_VCELL_EN] = 1, the same fcutoff setting applies to all VC channel measurements. Configure the post ADC low-pass filter cut-off frequency for VCELL measurement as shown in Table 11-1.

The differential BBP and BBN measurement also has its own digital LPF, enabled by the ADC_CTRL1[LPF_BB_EN] bit. The LPF for the BB channel has the same seven fcutoff options as for the VC measurements. Since the signal across the bus bar may be noisier than the VC measurement and may need a different fcutoff setting than the VC channel, the device provides a separate LPF configuration parameter, ADC_CONF1[LPF_BB2:0], for the BB channel, allowing the host to set a different fcutoff for the BB and VC measurements. Configure the post ADC low-pass filter cut-off frequency for bus bar measurement by refering to Table 11-1.

Table 11-1 Main ADC LPF fcutoff for VCELL and Bus Bar Measurement
ADC_CONF1[LPF_VCELL 2:0], ADC_CONF1[LPF_BB 2:0] Cut-Off Frequency Settling Time
0x0 6.5 Hz 154ms
0x1 13 Hz 77ms
0x2 26 Hz 38ms
0x3 53 Hz 19ms
0x4 111 Hz 9ms
0x5 240 Hz 4ms
0x6 600 Hz 1.6ms
0x7 240 Hz 4ms