SPRACN0F October   2021  – March 2023 F29H850TU , F29H859TU-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384S , TMS320F28386D , TMS320F28386S , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DH-Q1 , TMS320F28P659DK-Q1 , TMS320F28P659SH-Q1

 

  1.    The Essential Guide for Developing With C2000™ Real-Time Microcontrollers
  2.   Trademarks
  3. 1C2000 and Real-Time Control
    1. 1.1 Getting Started Resources
    2. 1.2 Processing
    3. 1.3 Control
    4. 1.4 Sensing
    5. 1.5 Interface
    6. 1.6 Functional Safety
  4. 2Sensing Key Technologies
    1. 2.1 Accurate Digital Domain Representation of Analog Signals
      1. 2.1.1 Value Proposition
      2. 2.1.2 In Depth
      3. 2.1.3 Device List
      4. 2.1.4 Hardware Platforms and Software Examples
      5. 2.1.5 Documentation
    2. 2.2 Optimizing Acquisition Time vs Circuit Complexity for Analog Inputs
      1. 2.2.1 Value Proposition
      2. 2.2.2 In Depth
      3. 2.2.3 Device List
      4. 2.2.4 Hardware Platforms and Software Examples
      5. 2.2.5 Documentation
    3. 2.3 Hardware Based Monitoring of Dual-Thresholds Using a Single Pin Reference
      1. 2.3.1 Value Proposition
      2. 2.3.2 In Depth
      3. 2.3.3 Device List
      4. 2.3.4 Hardware Platforms and Software Examples
      5. 2.3.5 Documentation
    4. 2.4 Resolving Tolerance and Aging Effects During ADC Sampling
      1. 2.4.1 Value Proposition
      2. 2.4.2 In Depth
      3. 2.4.3 Device List
      4. 2.4.4 Hardware Platforms and Software Examples
      5. 2.4.5 Documentation
    5. 2.5 Realizing Rotary Sensing Solutions Using C2000 Configurable Logic Block
      1. 2.5.1 Value Proposition
      2. 2.5.2 In Depth
      3. 2.5.3 Device List
      4. 2.5.4 Hardware Platforms and Software Examples
      5. 2.5.5 Documentation
    6. 2.6 Smart Sensing Across An Isolation Boundary
      1. 2.6.1 Value Proposition
      2. 2.6.2 In Depth
      3. 2.6.3 Device List
      4. 2.6.4 Hardware Platforms and Software Examples
      5. 2.6.5 Documentation
    7. 2.7 Enabling Intra-Period Updates in High Bandwidth Control Topologies
      1. 2.7.1 Value Proposition
      2. 2.7.2 In Depth
      3. 2.7.3 Device List
      4. 2.7.4 Hardware Platforms and Software Examples
      5. 2.7.5 Documentation
    8. 2.8 Accurate Monitoring of Real-Time Control System Events Without the Need for Signal Conditioning
      1. 2.8.1 Value Proposition
      2. 2.8.2 In Depth
      3. 2.8.3 Device List
      4. 2.8.4 Hardware Platforms and Software Examples
      5. 2.8.5 Documentation
  5. 3Processing Key Technologies
    1. 3.1 Accelerated Trigonometric Math Functions
      1. 3.1.1 Value Proposition
      2. 3.1.2 In Depth
      3. 3.1.3 Device List
      4. 3.1.4 Hardware Platforms and Software Examples
      5. 3.1.5 Documentation
    2. 3.2 Fast Onboard Integer Division
      1. 3.2.1 Value Proposition
      2. 3.2.2 In Depth
      3. 3.2.3 Device List
      4. 3.2.4 Hardware Platforms and Software Platforms
      5. 3.2.5 Documentation
    3. 3.3 Hardware Support for Double-Precision Floating-Point Operations
      1. 3.3.1 Value Proposition
      2. 3.3.2 In Depth
      3. 3.3.3 Device List
      4. 3.3.4 Hardware Platforms and Software Examples
      5. 3.3.5 Documentation
    4. 3.4 Increasing Control Loop Bandwidth With An Independent Processing Unit
      1. 3.4.1 Value Proposition
      2. 3.4.2 In Depth
      3. 3.4.3 Device List
      4. 3.4.4 Hardware Platforms and Software Examples
      5. 3.4.5 Documentation
    5. 3.5 Flexible System Interconnect: C2000 X-Bar
      1. 3.5.1 Value Proposition
      2. 3.5.2 In Depth
      3. 3.5.3 Device List
      4. 3.5.4 Hardware Platforms and Software Examples
      5. 3.5.5 Documentation
    6. 3.6 Improving Control Performance With Nonlinear PID Control
      1. 3.6.1 Value Proposition
      2. 3.6.2 In Depth
      3. 3.6.3 Device List
      4. 3.6.4 Hardware Platforms and Software Examples
      5. 3.6.5 Documentation
    7. 3.7 Understanding Flash Memory Performance In Real-Time Control Applications
      1. 3.7.1 Value Proposition
      2. 3.7.2 In Depth
      3. 3.7.3 Device List
      4. 3.7.4 Hardware Platforms and Software Examples
      5. 3.7.5 Documentation
    8. 3.8 Deterministic Program Execution With the C28x DSP Core
      1. 3.8.1 Value Proposition
      2. 3.8.2 In Depth
      3. 3.8.3 Device List
      4. 3.8.4 Hardware Platforms and Software Examples
      5. 3.8.5 Documentation
    9. 3.9 Efficient Live Firmware Updates (LFU) and Firmware Over-The-Air (FOTA) updates
      1. 3.9.1 Value Proposition
      2. 3.9.2 In Depth
      3. 3.9.3 Device List
      4. 3.9.4 Hardware Platforms and Software Examples
      5. 3.9.5 Documentation
  6. 4Control Key Technologies
    1. 4.1 Reducing Limit Cycling in Control Systems With C2000 HRPWMs
      1. 4.1.1 Value Proposition
      2. 4.1.2 In Depth
      3. 4.1.3 Device List
      4. 4.1.4 Hardware Platforms and Software Examples
      5. 4.1.5 Documentation
    2. 4.2 Shoot Through Prevention for Current Control Topologies With Configurable Deadband
      1. 4.2.1 Value Proposition
      2. 4.2.2 In Depth
      3. 4.2.3 Device List
      4. 4.2.4 Documentation
    3. 4.3 On-Chip Hardware Customization Using the C2000 Configurable Logic Block
      1. 4.3.1 Value Proposition
      2. 4.3.2 In Depth
      3. 4.3.3 Device List
      4. 4.3.4 Hardware Platforms and Software Examples
      5. 4.3.5 Documentation
    4. 4.4 Fast Detection of Over and Under Currents and Voltages
      1. 4.4.1 Value Proposition
      2. 4.4.2 In Depth
      3. 4.4.3 Device List
      4. 4.4.4 Hardware Platforms and Software Examples
      5. 4.4.5 Documentation
    5. 4.5 Improving System Power Density With High Resolution Phase Control
      1. 4.5.1 Value Proposition
      2. 4.5.2 In Depth
      3. 4.5.3 Device List
      4. 4.5.4 Hardware Platforms and Software Examples
      5. 4.5.5 Documentation
    6. 4.6 Safe and Optimized PWM Updates in High-Frequency, Multi-Phase and Variable Frequency Topologies
      1. 4.6.1 Value Proposition
      2. 4.6.2 In Depth
      3. 4.6.3 Device List
      4. 4.6.4 Hardware Platforms and Software Examples
      5. 4.6.5 Documentation
    7. 4.7 Solving Event Synchronization Across Multiple Controllers in Decentralized Control Systems
      1. 4.7.1 Value Proposition
      2. 4.7.2 In Depth
      3. 4.7.3 Device List
      4. 4.7.4 Hardware Platforms and Software Examples
      5. 4.7.5 Documentation
  7. 5Interface Key Technologies
    1. 5.1 Direct Host Control of C2000 Peripherals
      1. 5.1.1 Value Proposition
      2. 5.1.2 In Depth
        1. 5.1.2.1 HIC Bridge for FSI Applications
        2. 5.1.2.2 HIC Bridge for Position Encoder Applications Using CLB
      3. 5.1.3 Device List
      4. 5.1.4 Hardware Platforms and Software Examples
      5. 5.1.5 Documentation
    2. 5.2 Securing External Communications and Firmware Updates With an AES Engine
      1. 5.2.1 Value Proposition
      2. 5.2.2 In Depth
      3. 5.2.3 Device List
      4. 5.2.4 Hardware Platforms and Software Examples
      5. 5.2.5 Documentation
    3. 5.3 Distributed Real-Time Control Across an Isolation Boundary
      1. 5.3.1 Value Proposition
      2. 5.3.2 In Depth
      3. 5.3.3 Device List
      4. 5.3.4 Hardware Platforms and Software Examples
      5. 5.3.5 Documentation
    4. 5.4 Custom Tests and Data Pattern Generation Using the Embedded Pattern Generator (EPG)
      1. 5.4.1 Value Proposition
      2. 5.4.2 In Depth
      3. 5.4.3 Device List
      4. 5.4.4 Hardware Platforms and Software Examples
      5. 5.4.5 Documentation
  8. 6Safety Key Technologies
    1. 6.1 Non-Intrusive Run Time Monitoring and Diagnostics as Part of the Control Loop
      1. 6.1.1 Value Proposition
      2. 6.1.2 In Depth
      3. 6.1.3 Device List
      4. 6.1.4 Hardware Platforms and Software Examples
      5. 6.1.5 Documentation
    2. 6.2 Hardware Built-In Self-Test of the C28x CPU
      1. 6.2.1 Value Proposition
      2. 6.2.2 In Depth
      3. 6.2.3 Device List
      4. 6.2.4 Hardware Platforms and Software Examples
      5. 6.2.5 Documentation
    3. 6.3 Zero CPU Overhead Cyclic Redundancy Check for Embedded On-Chip Memories
      1. 6.3.1 Value Proposition
      2. 6.3.2 In Depth
      3. 6.3.3 Device List
      4. 6.3.4 Hardware Platforms and Software Examples
      5. 6.3.5 Documentation
    4. 6.4 Boot Code Authentication Prior To Code Execution
      1. 6.4.1 Value Proposition
      2. 6.4.2 In Depth
      3. 6.4.3 Device List
      4. 6.4.4 Hardware Platforms and Software Examples
        1. 6.4.4.1 Documentation
  9. 7References
    1. 7.1 Device List
    2. 7.2 Hardware/Software Resources
    3. 7.3 Documentation
  10. 8Revision History

In Depth

Conventional linear controllers such as the Proportional, Integral, Derivative (PID) are widely used with digital power applications, including motor control and motion control. The nonlinear PID (DCL Training Video - Non-linear Control) provided with the DCL extends the performance of its linear counterpart by shaping the loop error using a nonlinear law. A nonlinear shaping block is introduced in series with each of the three controller paths as shown below.

GUID-7CAAA83C-328B-4E18-B39C-3F97E1AEDDB8-low.png Figure 3-10 Non-Linear PID Block Diagram

The shape and aggressiveness of nonlinear action are configurable via six additional controller parameters (two in each nonlinear block), which are typically tuned in an iterative fashion to optimize a transient response. Like other controllers in the DCL, the NLPID parameters can be updated safely using a shadow parameter set and an update function.

#T5843526-264 shows an example of the potential improvement in step response available from the use of nonlinear control action.

GUID-51D3A264-246E-4BC5-A99D-BB3D1D8607C1-low.png Figure 3-11 Comparison of Response Time Between Linear and Non-linear PID

The NLPID executes with highest efficiency on devices equipped with the type 1 TMU (see GUID-5E5EBF43-A78B-40F9-B8A7-51DB8C80D65E.html#GUID-5E5EBF43-A78B-40F9-B8A7-51DB8C80D65E), such as the F280025 device. These devices have CPU instructions that allow the nonlinear controller to be executed in 117 cycles compared with around 3,300 cycles without such instructions. This cycle efficiency allows the nonlinear PID to be used in high frequency applications such as switching power supplies and current control loops.

The DCL is packaged in C2000Ware, which is available for free download by C2000 users. The library includes a PID controller tuning guide to help users get the most from the NLPID controller.