SPRZ412N December   2013  – May 2024 TMS320F28374D , TMS320F28375D , TMS320F28376D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28378D , TMS320F28379D , TMS320F28379D-Q1

 

  1.   1
  2.   Abstract
  3. 1Usage Notes and Advisories Matrices
    1. 1.1 Usage Notes Matrix
    2. 1.2 Advisories Matrix
  4. 2Nomenclature, Package Symbolization, and Revision Identification
    1. 2.1 Device and Development Support Tool Nomenclature
    2. 2.2 Devices Supported
    3. 2.3 Package Symbolization and Revision Identification
  5. 3Silicon Revision C Usage Notes and Advisories
    1. 3.1 Silicon Revision C Usage Notes
      1. 3.1.1 PIE: Spurious Nested Interrupt After Back-to-Back PIEACK Write and Manual CPU Interrupt Mask Clear
      2. 3.1.2 Caution While Using Nested Interrupts
      3. 3.1.3 SYS/BIOS: Version Implemented in Device ROM is not Maintained
      4. 3.1.4 SDFM: Use Caution While Using SDFM Under Noisy Conditions
      5. 3.1.5 McBSP: XRDY Bit can Hold the Not-Ready Status (0) if New Data is Written to the DX1 Register Without Verifying if the XRDY Bit is in its Ready State (1)
    2. 3.2 Silicon Revision C Advisories
      1.      Advisory
      2.      Advisory
      3.      Advisory
      4.      Advisory
      5.      Advisory
      6.      Advisory
      7.      Advisory
      8.      Advisory
      9.      Advisory
      10.      Advisory
      11.      Advisory
      12.      Advisory
      13.      Advisory
      14.      Advisory
      15.      Advisory
      16.      Advisory
      17.      Advisory
      18.      Advisory
      19.      Advisory
      20.      Advisory
      21.      Advisory
      22.      Advisory
      23.      Advisory
      24.      Advisory
      25.      Advisory
      26.      Advisory
      27.      Advisory
      28.      Advisory
      29.      Advisory
      30.      Advisory
      31.      Advisory
      32.      Advisory
      33.      Advisory
      34.      Advisory
      35.      Advisory
      36.      Advisory
      37.      Advisory
      38.      Advisory
  6. 4Silicon Revision B Usage Notes and Advisories
    1. 4.1 Silicon Revision B Usage Notes
    2. 4.2 Silicon Revision B Advisories
      1.      Advisory
      2.      Advisory
      3.      Advisory
      4.      Advisory
      5.      Advisory
      6.      Advisory
      7.      Advisory
      8.      Advisory
      9.      Advisory
  7. 5Silicon Revision A Usage Notes and Advisories
    1. 5.1 Silicon Revision A Usage Notes
    2. 5.2 Silicon Revision A Advisories
      1.      Advisory
      2.      Advisory
      3.      Advisory
      4.      Advisory
      5.      Advisory
      6.      Advisory
      7.      Advisory
      8.      Advisory
      9.      Advisory
      10.      Advisory
      11.      Advisory
  8. 6Silicon Revision 0 Usage Notes and Advisories
    1. 6.1 Silicon Revision 0 Usage Notes
    2. 6.2 Silicon Revision 0 Advisories
      1.      Advisory
  9. 7Documentation Support
  10. 8Trademarks
  11. 9Revision History

Advisory

ADC: ADC Input Multiplexer Connection at Beginning of Acquisition Window

Revisions Affected

0, A

Details

The input of the ADC may experience a brief connection to either VSSA or another input channel at the beginning of the sample-and-hold phase of the conversion. The conditions where this occurs are summarized below:

  • If the previously converted channel is the same as the currently converting channel, then no additional connection occurs.
  • If the previously converted channel and the currently converting channel are both odd-numbered channels or both even-numbered channels (for example, A6 and A14), then the two channels will be briefly connected.
  • If the previously converted channel and the currently converting channel are not both odd-numbered channels or not both even-numbered channels (for example, A6 and A15), then the currently converting channel will be briefly connected to VSSA.

In the worst case, the connection resistance could be as low as 30 Ω and the duration of the connection could be as long as 5 ns.

Workarounds

This typically will not present a significant issue for low-impedance signal sources (for example, an op-amp). For high-impedance sources, it may be necessary to increase the duration of the acquisition window beyond what would be suggested by the characteristics of the ADC input model.