Davit Khudaverdyan
Efficiency is the most crucial criteria for some power supplies. With high-efficiency controllers like the UCC28780, it is important now more than ever to understand how to conduct a proper efficiency measurement that adheres to regulation standards. In this post, I’ll show you how to properly connect and measure AC/DC power supply efficiency.
Efficiency measurements are only as good as the connections from which they’re made. To make efficiency measurements as accurate as possible the first step is to make sure that no unnecessary equipment/circuitry is connected to the board, such as an oscilloscope connector or other meters that are not needed in the efficiency measurement test itself. If there are connections that draw power that cannot be removed, their power consumption needs to be noted in the measurement or calculation and not neglected. This is critical in low-load and stand-by power, in which any external connections will have a larger impact in the efficiency measurement.
The next step is to place the probes for measurement. One option is to put the probes as close to the output as possible, like on the output capacitor or at the pins of jumper J6 in the UCC28780 evaluation module (EVM), as shown in Figure 1. However, if the power supply has a fixed cable, you should measure from the end of the fixed cable rather than directly from the output. Connecting this way ensures a proper Kelvin connection and provides high-accuracy measurements.
Now let’s move to the input side of efficiency measurements for AC/DC converters. A dedicated power meter is required, as the two-multimeter setup used on the output side would not be accurate for the input because the multi-meters would not account for the harmonic content like a power meter would. Similar to the output, your goal is still to place the measuring probes as close as possible to the board’s input. Both input and output connections are shown in Figure 2, and match the color scheme of Figure 1.
Title 10 Electronic Code of Federal Regulations outlines the correct way to conduct power-supply efficiency measurements, and will be linked in the additional resources. Here are the steps for performing an accurate efficiency measurement:
A test procedure would then look like this:
Figure 3 outlines the test procedure in a flowchart diagram.
Engineers can test things many ways. As the industry continues to push for higher and higher efficiencies in power supplies, it is important to have a good grasp on what a consistent testing environment and procedure look like.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated