Nikhil Jotwani
In this blog post, I’d like to discuss a methodology for providing a variable output voltage in an inverting buck-boost topology. In this topology, the choice of resistors on the feedback voltage divider network defines the output voltage, as shown in Figure 1.
For a different output voltage, you will need to use a different set of resistor values. This may turn out to be a tedious process if the output voltage changes constantly. So let’s discuss a method of current injection that you can use to obtain variable output voltages, without changing the resistor values.
As the name suggests, the current-injection method injects a small current in the feedback divider network to alter the drop occurring across the top feedback resistor, which in turn affects the output voltage. The easiest way to inject current is to use a power supply with a resistor in series, as shown in Figure 2.
If you connect the power supply directly to the feedback divider (without a resistor), the feedback voltage will clamp to a value dictated by the power supply. This is an undesirable situation, because if the clamped voltage is different than the reference voltage of the internal error amplifier, the device will completely turn off, if the clamped voltage is higher than the reference voltage. Or it will remain on continuously, if the clamped voltage is lower than the reference voltage, which can damage the device. In Figure 2, the Rctrl and RFBT are connected in parallel. For that configuration, Equation 1 expresses a linear relationship between the control voltage (Vctrl) and the output voltage (Vout):
The advantage of this method is the ease of implementation; however, it comes with a few disadvantages:
To overcome these disadvantages, consider another configuration, shown in Figure 3, with a slight variation to the first method. This second method uses a p-channel n-channel p-channel (PNP) transistor along with the resistor.
Equation 2 shows the relationship between the output voltage and the control voltage, which is linear in nature:
In this case, you need to calculate only the values of RFBT and RFBB in order to define the output voltage. The PNP is biased in a manner so that it operates as a constant current source. This variation in the collector voltage (that is, the feedback node) does not affect the injection current.
By using the PNP, the control voltage and feedback node are isolated from each other. Also, the high output resistance of the PNP collector does not cause any instability in the design. If the power supply is connected with reverse polarity, the PNP transistor does not turn on, offering inherent protection. The only downside to this method is that the control of the output voltage is unidirectional and needs an extra component.
Both methods have their own advantages and disadvantages. However, the method using the PNP transistor provides more robustness, along with reliable control and variation of the output voltage.
This technique of varying the output voltage in a buck-boost topology includes the 3.5V to 36V, 5A LM73605 step-down converter. TI offers a wide range of step-down converters, which you can find on the DC/DC switching regulators overview page.
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated